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Abstract
Let (X, u) be a measurable topological space. Let Si,S2,--- be a
family of finite subsets of X. Suppose each = € S; has a weight w;, € R

assigned to it. We say {S;} is {w; }-distributed with respect to the measure

w if for any continuous function f on X, we have lim;_.« S
zes, Wiz

[y F@)du(a).

Let S(N, k) be the space of modular cusp forms over I'g(IN) of weight
k and let E(N, k) C S(N, k) be a basis consists of Hecke eigenforms. Let
ar(h) be the r*" Fourier coefficient of h. Let xj be the eigenvalue of h
relative to the normalized Hecke operator Tj. Let || - || be the Petersson

norm on S(N, k). In this paper we will show that for any even integer
2 _ —4mnr

k>3, {ap i h e E(N,k)},pt N is {1286 }-distributed with respect

to a polynomial times the Sato-Tate measure when N — oo.

1 Introduction

Let S(N, k) be the space of modular cusp forms on I'g(N) of weight k& and
for p ¥ N, let T, be the Hecke operator on S(N, k) as defined in [Se2]. We
shall consider Tz/> =p~ -1/ 2Tp. Denote the eigenvalue of a Hecke eigenform h
relative to 7} by 7. The Ramanujan-Petersson conjecture (Deligne’s Theorem)
asserts that |z]2| <2 for (p, N) = 1. Furthermore, it is conjectured that the set
{x;} : (p, N) = 1} is equidistributed with respect to the Sato-Tate measure(refer
to [Sel] Chapter 1)

x2
dMoo(l”)Z{ 1/1—%Zdz when z € [-2,2],

0 otherwise.

Let £(N, k) be a basis of S(N, k) consisting of Hecke eigenforms. Serre [Se2]
considered the distribution of {2 : h € £(N,k)} for fixed p. He used the Sel-
berg trace formula for the Hecke operators and showed that when N — oo, the
set {z"'} is equidistributed as

p+1
(p'/2 + p=1/2)2 —

dpip(a) = (). (1)



In this paper, we established a weighted distribution for {2 : h € £(N,k)} for
fixed p.

Let (X, u) be a measurable topological space. Let Si,S3,---,S;,--+ be a
family of finite subsets of X. Suppose each z € S; has a weight w;;, € R™
assigned to it. Let J, be the Dirac measure at x. Define

ZmGSi Wiz 613

du; = .
' Zme&, Wig

We say {S;} is {w; }-distributed with respect to measure dyu if

Wiz 6
lim dy; = lim M
11— 00

=du.
1—00 Z:EGS Wig

This means for any continuous function f on X, we have

lim f( )duz(x) _ 11 ZIGS wza:f / f

— 71—
i—00 1—00 zES; Wiz

When w; , = 1, the definition is the same as the definition of equidistribution
given in Serre [Se2] Section 1.

In this paper, we will use Kuznietsov trace formula to obtain a certain
weighted distributions.

Suppose h € S(N, k) is a Hecke eigenform with Fourier expansion

h(z) = Zareg”r”7 Rez > 0.

r=1

Write a,(h) = a,. Let || - || be the Petersson norm on S(N, k) ([Ge] p.24 (2.6)).
We can assume k is even because S(N, k) is empty when k is odd. Define
polynomials X,, by
sin(n + 1)¢
X, (2 = ——"".
Let r be a positive integer. Let p be a fixed prime. Let r, = ord, r. Then we
have

Theorem 1.1 Let k be an even number > 3. Consider the family of sets Sy =
2 —4nr

{(z}) : h € E(N,k)},pt N with weight w, = % assigned to x). Then

the famzly of sets {Sn : pt N} is {w} }-distributed with respect to

Z X21 d,uoo )

0<i<r,
when N — o0.

The proof will be given at the end of this paper. A more general result is
given in Theorem 5.7.



Corollary 1.2 Let k, Sy, wj, be as above. If ptr, then the family of sets {Sn :
pI N}, N — oo is {w) }-distributed with respect to the Sato-Tate measure.

Proof. If ptr, rp, = ord,r =0 and Xo(z) = 1. The corollary follows easily. O

The technique used here can be generalized to other groups (example G =
GSp(2k)), refer to [Li] for the generalizations.

2 Construction of test functions

*

Let G = GL;. The unipotent group is N = (1 1

) C G. Write e =

(1 1). Let Z be the center of G, let M be the diagonal subgroup of G.

- cosf  sinf
Denote U = U/Z for any subset U of GLg. Define K., = (_ sinf  cos 9)}

When p < oo, define K,, = GL3(Z,). Define Ko(N), = {<a b) €EK,:c=0

d
(mod N)}, Ko(N) = [T, <. Ko(N),.
Let A be the adeles of Q. Let Ag, be the finite component of A.
Let L? be the Hilbert space of continuous functions ¢ on Z(A)G(Q)\G(A)
such that fZ(A)G(Q)\G(A) |f(9)|?dg < oo. The subset of cuspidal functions in

L? is denoted by LZ. Let R be the right regular representation of G(A) on L?.

There is an embedding S(N, k) — L3 ([Ge], p. 42). The map is denoted by
[ — ¢. Denote the image of the map by A(N, k).

Suppose (7, V) is a representation of a meaburable topological group G and
f is a continuous function on G. Define 7(f)v = fG g)vdg.

We are going to construct a function f = fOO fan on G( ) = G(R)xG(Afn).
The main property of this function is given in Proposition 2.1. The results
quoted below are well-known.

The function fo, = fx is a function defined on GLy(R). It is the con-
jugate of a normalized matrix coefficient. Explicitly it is defined by fx(g) =
dr, (m(g)vo, vo) where Ty, is the discrete series representation of lowest weight k,
vp is the lowest weight unit vector and d,, is the formal degree. Explicitly we
can take

EM if g = <i Z) and det g > 0,

fk(g) — 4n ((a+d)+i(b—c))k (2)

if detg < 0.

Refer to [Va] p192 or [KL] for the details.
Define ¢(N) = [T'o(1) : T'o(NV )] We take meas(K,) = 1. One can easily

)
show that meas(Ky(N)) =
If R be a ring, let Ma(R

_ 1
[Ko(1): Ko( N (V)
) be all the 2 x 2 matrix over R. Now we define

M(n,N):{g:(i 2)€M2 HZ : det(g EnHZ* and c=0 (mod N)},



Define

(g) = —L__ —4(N) ifg=2m,z€ Z(Agfn),m € M(n,N),
9= 0 otherwise.

Proposition 2.1 Suppose f = fip ", R(f) vanishes on A(N,k)*. On A(N,k)
it acts by
R(Hen=¢ -y,

Proof. The idea of the proof can be found in [Ge] Lemma 3.7 and also [Ro]
Lemma 2.12. A complete proof can be found in [KL]. O

Corollary 2.2 Let h € E(N,k), [ = fuf™ then

R(f)pn =n' Han ©n

pln

Proof. Recall that n = [[p"». We have T}, = [],T}~,. By [Se2] Section 2
and Section 3 Lemma 1, 7)., = X, (T},). The corollary follows easily from the
previous proposition. O

3 Kuznietsov trace formula

Let f be a continuous function on G

—~

A). The kernel of R(f) is defined as

K(z,y) = [z ). (3)

| N

eq

—~

Q)

2

Another way to express the kernel is
K(z,y) =) R()o(@)o(y),
¢

here ¢ runs through an orthonormal basis of L?2. When f = fif", R(f) an-
nihilates A(N,k)>. We can sum over an orthonormal basis of A(N,k). An

orthonormal basis can be taken as {‘ﬁ’;(I) h € E(N,k)}. Tt is easy to show that

K= 3 2@ 5] "

N Y I P

Use 6 to denote a character on Q\A. We can decompose 6 into 0.65,. Here
Oso(resp. Ogy) is the infinite(resp. finite) component of §. There exists r € Q,
such that 0. (z) = 2™, We assume r € ZT throughout the whole paper.



Under this assumption 6g, is trivial on [[ Z,. The character 6 can also be
regarded as a character on N(Q)\N(A).

We factorize r into [ p">.

Normalize measure on Q, by taking meas(Z,) = 1. Define measure on A
by using the product measure. We can show that meas(Q\A) = 1. Measure on
N(A) is defined by identifying A with N(A).

From (3), the kernel K (z,y) is invariant under left multiplication of elements

in N(Q) x N(Q).
Kuznietsov trace formula is the equality obtained by expanding the following
integral using the two formulas (3) and (4)

KTE(f) = | / K(n,m)0(n7 o) dmdna.— (5)
N(Q)\N(A) /N(Q)\N(A)

The integral is convergent because Q\A is compact. The expression obtained
using formula (3) is called the geometric side. Using formula (4) we obtain
the spectral side.

Proposition 3.1 When f = fi.f™, then KTF(f) is equal to

n'/? Z Han(xZ) wy,

he&(N,k) \pln

recall that
|ar(h)|26—47rr

wy, =
A2

Proof. Using (4) and Corollary 2.2

K@y)=n"? Y | [ Xu,(«h) en(@)enly)

he BTN v I~
, pln

Thus the spectral side of (5) is

1
n2 5T ] X, (el e

he&E(N,k) \p|n

2

/ <ph(n)9(n*1)dn
N(Q)\N(A)

From [Ge] Chapter 3 lemma 3.6,

—27r . +
/ on(n)f(n=1)dn = { re ifre Z
N(Q)\N(A) otherwise.

The proposition follows easily. O

Let 6 € G. We define
Ns = {(m,ng) e NxN: n1_15n2 ~ 5};

here g1 ~ g9 if g3 = zgo for some z in the center. Denote the image of § in

NQN\G(Q)/N(Q) by [d]




Proposition 3.2

KTF(f) = > F(n7 on2)0(ny *na)dnydns.
BleN(QV\GQ)/N(Q) " N (DN (ANXN(A)

Proof. The geometric side of KTF(f)

-/ / £ 0 m2)0(n1 ) dmsciny
N(QO\N(A) IN(QO\N(A) ==

7€G(Q)
= >

[BleN(QN\G(Q)/N(Q)

- Z// Z (7 mi omans)0(ny  na)dnidns.
[9]

(m1,m2)E€N;(Q)\N(Q)xN(Q)

Z f(nytyng)0(ny *ng)dnydny.

/N(Q)\N(A) /N(Q)\N A eN@oN@)

Replace ny by ml_lnl, ng by mg_lng. Since 6 is trivial on mi,ms € N(Q),
KTF(f) is equal to

Z f(NIlang)e(nI1n2)dnldn2.
BlEN(@\G@)/N(Q) ~ VAN (APN(A)

Denote
Is(f) = / f(ny on2)0(ny  na)dnydnsy.
Ns(Q)\N(A)x N(A)

An element ¢ € G(Q) is said to be admissible if the map
Ns(A) — C: (n1,n2) — O(ny 'ng)
is trivial.
Lemma 3.3 If 0 is not admissible, then I5(f) = 0.

Proof.  Assume that ¢ is not admissible. Let (vq,v2) € Ns(A) such that
9(1/1_11/2) # 1. Replace ni,ns by vini, vans respectively.

Is(f) = / f(ny v Svang)0(ny vy tuans ) dny dnsg.
Ns(Q)\N(A)xN(A)

Thus I5(f) = G(Vfll/g)lg =I5 =0. O

Theorem 3.4 KTF(f) =

/. MCCCED / N / e (g g) )00 ).

HeEQ*



Proof. By the Bruhat decomposition G = NM U NM (O 1) N. Thus a

10
representative set of N(Q\G{Q)/N(Q) is {(g (1)) e Q*}U{G g) :

w € Q*}. From Theorem 3.2, the geometric side = 2[5] Is. By Lemma 3.3,
I5(f) = 0 unless ¢ is admissible.

When 6 = (7 0 , simple calculation shows that N5 = {( <1 ’yt) , (1 t) )}

01) 1 1

If § is admissible, we have 6((y—1)t) = 1 for any t € A. Because 6 is non-trivial,
this cannot happen unless v = 1. Thus

1(1 0 _
L= [ st (g 9) nadttor )
Ns(Q)\N(A)xN(A)

/ f(nl_lng)ﬁ(nl_lng)dngdnl.
diagonal \N(A)XN(A)

Letting my = ny,me = nflng, the diagonal becomes (mi,e). The integral
becomes

f(m2)9(m2)dm2dm1 = / f(mg)e(mg)de

/N(Q)XG\N(A)XN(A) N(A)

When § = ((1) ’g), simple calculation shows that N5(Q) = {(e,e)}. Thus ¢ is

admissible. We have

1 (0 _
I(S(.f) = /N(A)><N(A) f(nl ! (1 /(;) n2)9(n1 1n2)dn1dn2.

We can prove the theorem by summing up all the terms. O

4 FEvaluation of Integrals
Lemma 4.1 For u € Q, 05, (u) = O (—u) = 727

Proof. We have 1 = 0(u) = 0o (u)0an(u). The lemma follows easily. O

The following lemmas show us how to evaluate f™. Suppose R is a ring, we
denote R*? = {z%: z € R*}.

a

b
a) € G(Afn) and det(g) € n[[Z;. Then
g € supp f" if and only if g € M2(][Z,) and c=0 mod N.

Lemma 4.2 Suppose g =



Proof. Write g = zm, z = (C C) € Z(Agan), m € M(n,N). Taking the

determinant on both sides, we see that ¢ is in [] Z;,. Thus z can be absorbed
into m, so g € M(n,N). It is easy to see that g € M(n,N) if and only if g
satisfies the conditions in the lemma. (]

Lemma 4.3 Suppose g = <(Cl Z) € G(Asn), then g is in supp f™ only if

detg € nARZZ ] Z.
Under this assumption, say detg = n¢?u for ¢ € A}, u € [1Z;. Let

z= (C C). Letm = z2"1g = (Zi nm1;z> Then g € supp ™ if and only if

m € My(][Z,) and ma; =0 mod N.

Proof. If g is in supp f*, then g = zm with 2z = (C C) € Z(Agn) and
m € M(n,N). Thus det g = (*>detm € nA}2 ] Z;. This proves the first part.
Suppose det g = n¢?u as stated in the lemma. Let z = (C C)' Obvi-

ously g € supp f" if and only if 27'g € supp f*. One can easily show that
det 27 'g = nu € n[] Z;. The lemma follows easily from the above lemma. [

From now on we call the z = (C ) appearing in the previous lemma a

¢
z-part of g.

Define
1 if statement is true,

True(statement) = { 0 otherwise

Proposition 4.4
[ o), (6)
N (Afin)

= (N)n'/2 True(n'/? € Z and n'/?|r)

1t
0 1

supp f™ only if 1 € nQ;‘fZ; for all primes p. Thus n, is even for all p. As a

Proof. Write ng, = ( > Its determinant is 1. From Lemma 4.3, ng, €

. o . 2
result n € £Q*2. We can assume n is positive. Write n =n'*, n’ € Z+.
-1

n 0 _ n' n't
Now a z-part of ng, can be z = 0 .Letm=z"1ng, = <0 Ny >
The lower left entry of m is 0, which is divisible by N. By Lemma 4.3, ng, is

i li
in supp f™ if and only if (% Z,t) € M>(I[Z,). Or equivalently

t'=n'te HZP.



Thus (6) is equal to

tt
(V) T N E e
ten’~1[] Z, 1z, n'’n
Because gy is trivial on [[ Z,, the integral (6) is equal to
t/
!/ !
(N > / Osn (-~ )dt
SEZ/n'Z stn'[[ Zp
=o' Y e~ Dymeas(s + ' [[Z,) =w(N) Y e
n’ P n’
SEZ/n'Z SEZ/n'Z
The result follows easily. O
Next, we evaluate
n(,—1 0 H ) -1
1 n\"q n .
f(n 10 n2)0sn (17 )0an(n2)dnidng (7)
Afin X Afin
Define st 5

$1,82€Z/uZ,s1s2=n (mod u)
Proposition 4.5 The integral (7) # 0 only if p = £ for some integer u =0
(mod N). Under this assumption, the integral (7) is equal to (N) Kl (Fn, 0).

Proof. Let n; = (1 tf) i=1,2.

1 (0 —t — 11t
n11<1 g>n2:< 1l H t21 2>. (8)

Notice det(ny* <(1) g) ng) = —p. From Lemma 4.3 , (8) € supp f" only if
i E nQZQZ; for all p. Thus we have ord,(1) = n, (mod 2) for all p. As a

result i € £nQ?. Let u = £n(? for some ¢ € Q. We can take z = C)

as the z-part. Write m = 2z~ 'ny" ((1) g) ng = <<*1 :) By Lemma 4.3, (8)
is in supp f™ only if (71 € Z,, for all p. Hence ¢ = 1/u for some u € Z*. Let
p=x75,u€Z.
B (Utl :I:n(utl)(utg)>
m = u .
U uto

Write t] = uty, th = uty. By Lemma 4.3 again, (8) is in supp f™ if and only if

th,th € HZp,u =0 (mod N),tjth =4n (mod u).



The integral (7) becomes

—t — tqt
FrO BT R )0 (— ) Ogin (o) dt 1 i
ty,t2 1 t2

_ t/ t/ t, t/
:/ fr ( h ﬂ:) Opin (——)0sin (2)d-Ld -2
th L €l] Zop,th thetntul] Zy u iy u utouou
/ t/ tl t/
— y(N) / O~ )05 (210202
51,52€Z/uZ,5152:ﬂ:n (Sl+uHZ?”)X(52+uHZ”) u u wou
S1

— Y(N) > (2

$1,820€Z/uZ,s155=+n

—oy) Y e

$1,520€Z/uZ,s152=Fn

)6 (—=2) meas([ ] 2,)*

U
Proposition 4.6 When k > 3,
/ F1(n)foo(n)dn = e Yr>0, (9)
N(R) 0 otherwise.
. 1 ¢ . . .
Proof. Write n = ( 1). By (2), the integral in (9) is equal to

k—1 [ 28
WZTdt'
A /,Oo 2+it)h"

When r > 0, use the z-axis and the upper semi-circle as the contour. We
can get the result easily by evaluating the residue of the integrand at ¢ = 2i.

When r < 0, use the z-axis and the lower semi-circle as the contour. The
result follows easily. O

Proposition 4.7 When k > 3,

1 /(0 _
/ fk(nll(l ‘g) 12)000 (] '12)dnydnsy (10)
N(R)xN(R)

18 non-zero only if r,—u are all positive. Under this condition, the integral is
equal to
6747rr(47m')krk:71
2(k —2)!

here Jy, is the Bessel J function.

(=)} T (4 /=)

10



Proof. When > 0, det(n]! ng) = —p < 0. The value of fi at it is 0.

1

So we can assume g < 0. Write n; = <1 tf) ,i=1,2. By (2), (10) =

)k/QeQﬂ'ir(tz—tl)
dt,dt
/ / t1—|—t2—|—l( 1+u—t1t2))k 1502

First assume r > 0, evaluate the residue of the integrand at to =i + 5, (10)
becomes

E—1 [~ 2w  2F(—p)k/2(2mir)k1 2mir(it s —th)
( dty

Ar 1—ity)k (k—1)!

Use z-axis and lower semi-circle as the contour, the integral can be calculated
by evaluating the residue of the integrand at t; = —i. Notice that the path is
counterclockwise.

Refer to [Wa] Chapter 2.1, we have

[ee]
2= =N "6

Take &€ = 4nry/—p, T = fif/l};, Be the residue theorem, (10) becomes

k=1 2w 2P ) ()R
o (—i)k( ) 1) Ji—1(4 \/7)(7#)%

We can get the result easily.
When r < 0, use the axis and upper semi-circle as the contour. It is easy to
show that (10) is 0. O

Theorem 4.8 Let k be an even number > 3. Letn, N,r be any positive integers.
Factorize n into [[, p". Assume GCD(N,n) = 1. Define 0o () = e2™re then

we have
2 —4nr
S (T ) e
heE k) 1Al
; pln
—4nr k—1
— True(n!/2 € Z,n1/2 | 1) ATy (11)
(k; —2)!
6747”(47”)’6 k—1 /2
*2(1@— Z Nka 1 D Kly(n,0s).  (12)

Proof. The spectral side is obtained by Proposition 3.1.

The geometric side is obtained by Theorem 3.4. The integral I.(f) is the
product of (6) and (9). Using the results in Proposition 4.6 and Corollary 4.4,
we can get I.(f).

11



Let § = <(1) ’g) Then I5(f) is product of (7) and (10). By Proposition 4.5

(7) # 0 only if p = % and N|u. Write v = Nv. By Proposition 4.7, (10) # 0

0 —-n
only if y1 < 0. Thus Y5 I5(f) is a sum over {§ = (N”)2> cveZth

1 0
Multiply the results we obtained in Proposition 4.5 and Proposition 4.7.
Summing up all the terms in the geometric side. We can obtain the formula by
equating the spectral side and geometric side and then dividing both sides by
1/2 O
n-/=.

5 Weighted distribution

Lemma 5.1
| Kl (7, 0s0)| < un.

Proof. Obviously |Kl,(n,0x)] < [{s152 = n (mod u)}|. It suffices to prove
[{s182 =n (mod u)}| < wun for u=pr and n = p"».

If n, > uyp, [{s1s2 =n (mod u)}| < u? <un.
Assume n, < up.

[{s1s2=n (mod u)}| = Z|{t st=n (mod u)}|

= Z ged(s,u) Zp s :ord,(s) =sp,1 < s <u}

s=1,ged(s,u)n 5p=0
np pup
S U
<> p”pspé(anrl)ppSnu

From [Iw] equation (5.16)
Jp(z) < min{z® z71/2}.
Proposition 5.2 Let k be an even integer > 3, then
SN | £
heE(N,k) pln

7rr(4,n_7,)k:71 n(k+1)/2
G O

Here the constant in the O-notation depends on 0 only.

= True(n'/? e Z,n1/2|r)

12



Proof. Form the inequalities given above, (12) is
e~ 4 (4 )Fph—l 1 [4mnt/?p ol
—— (N — | —— N
D T )ZN’U< No ) (Non)

v=1

¢(N) k+1)/2 1 w(N) k+1)/2
<r W”( / val<<r W”( 2.

The proposition follows easily from Theorem 4.8. O

Corollary 5.3 The average of weight

1 e~ 4kt 1
Z wh = —o T Ol
»(N) heE(N, k) (k —2)! N
Proof. Put n =1 in the above proposition. O

Let pi1,p2,---p¢ be distinct primes. For any prime p, let I, be an interval
in R containing all the possible values of a:;f for any Hecke eigenform h. By
Deligne’s result, we can take I, = [—2,2], but we don’t need this strong result.
We only need the fact that I, is a finite interval. Refer to [Ro] Proposition 2.9
for the proof of this fact.

Denote the set of real valued continuous functions on I = I, x Ip, -+ X I,
by C(I,, X Ip, -+ x Ip,). Define a topological structure on it by using the L™
norm || fllec = max{|f(z)|}. Let k be an even integer > 3, define a functional

1

Sn on C(Ip, X Ip, -+ x Ip,) by
ZhGS(N,k) f(x217 T "ng)wz
ng = r
ZheS(N,k) W,
Proposition 5.4
14
lim gNanl Xowes Xane :Hﬂue(2‘npi’npi/2griﬂi)

N—00,(N,p1,+,pe)=1 iy

Proof. Let n = p?”l . -pZ”. From Corollary 5.2 and 5.3,

¢ e 4T (4rp)h—1 n(k+1)/2

Hi:l True(2|ny,, np, /2 < 71p,) (k(—2)!) +O( NF-1 )

ng: e—47 (47r)h—1 1 :
k—2)! + O(Nkfl)

Letting N — oo, the proposition follows easily. O

Proposition 5.5
/ X (@) X (2)dtoe (2) = S
R

13



Proof. A proof can be found in [Se2] Section 2.2.

zénm _ / sglnﬁ <in? esu.nnﬁde
2 o sinf sin 6

Recall X,,(z) = S;?H%Q,x = 2cos . Make a substitution x = 2 cos 6, we have

sin 6

2
™
§6nm—/_2Xn(x)Xm(x) 5 dz.

The proposition follows easily. O

Theorem 5.6 Define measure

ds(@) = S Xow (2)dpioo a). (13)

0<n’/<rp,

Also define
5= [ o [t o) diteo.

Then for any f € C(Ip, X Ip, - x I,,),
Jim §a() = 5(7).

Proof. By the previous proposition
/ X, (@)dpi(x) = True(2lny,, np, /2 < 1p,).
Ip,

Take the product over i = 1,--- /¢ and by proposition 5.4, we have

S(anl SR Xn”) - Nﬂoo,(l\},il?ll,--.,pz)ZI %N(an’l KX X”Pz)'

One can easily show that |Fn(f)] < || flleo. Thus Fn is a continuous linear
functional. Because deg X,, = n, the linear span of {X,} consists of all the one

variable polynormals. Thus the linear span of {an1 X oo X ane} consists of
all the possible polynomials. The theorem follows by the fact that polynomials
are dense in C(Ip, X Ip, -+ % I,,). O

Theorem 5.7 Let k be an even integer > 3. Consider the family of sets Sy =

{(le7~~ ,xzé) th e E(NKk)}, (N,p1---pe) = 1 with weight {w}} assigned to
(xh .- al). Then the family of sets {Sn,p t N} is {w},}-distributed with

respect to the measure duy -- - dpey when N — oco. Here u; is given by equation
(13).

The measure u; has the following properties : (a) it is supported on [—2,2], (b)
it is a polynomial times the Sato-Tate measure on [—2,2], (c) it depends only
on ord,(r).
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Proof. Follows easily from the previous theorem.
Proof of 1.1. Take { =1 and p; = p.

oo
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