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Abstract

Let (X, µ) be a measurable topological space. Let S1, S2, · · · be a
family of finite subsets of X. Suppose each x ∈ Si has a weight wix ∈ R+

assigned to it. We say {Si} is {wi}-distributed with respect to the measure

µ if for any continuous function f on X, we have limi→∞

∑
x∈Si

wixf(x)∑
x∈Si

wix
=∫

X
f(x)dµ(x).
Let S(N, k) be the space of modular cusp forms over Γ0(N) of weight

k and let E(N, k) ⊂ S(N, k) be a basis consists of Hecke eigenforms. Let
ar(h) be the rth Fourier coefficient of h. Let xh

p be the eigenvalue of h
relative to the normalized Hecke operator T ′

p. Let ‖ · ‖ be the Petersson
norm on S(N, k). In this paper we will show that for any even integer

k ≥ 3, {xh
p : h ∈ E(N, k)}, p - N is { |ar(h)|2e−4πr

‖h‖2 }-distributed with respect

to a polynomial times the Sato-Tate measure when N →∞.

1 Introduction

Let S(N, k) be the space of modular cusp forms on Γ0(N) of weight k and
for p - N , let Tp be the Hecke operator on S(N, k) as defined in [Se2]. We
shall consider T ′p = p−(k−1)/2Tp. Denote the eigenvalue of a Hecke eigenform h

relative to T ′p by xhp . The Ramanujan-Petersson conjecture (Deligne’s Theorem)
asserts that |xhp | ≤ 2 for (p,N) = 1. Furthermore, it is conjectured that the set
{xhp : (p,N) = 1} is equidistributed with respect to the Sato-Tate measure(refer
to [Se1] Chapter 1)

dµ∞(x) =

{
1
π

√
1− x2

4 dx when x ∈ [−2, 2],
0 otherwise.

Let E(N, k) be a basis of S(N, k) consisting of Hecke eigenforms. Serre [Se2]
considered the distribution of {xhp : h ∈ E(N, k)} for fixed p. He used the Sel-
berg trace formula for the Hecke operators and showed that when N →∞, the
set {xhp} is equidistributed as

dµp(x) =
p+ 1

(p1/2 + p−1/2)2 − x2
dµ∞(x). (1)
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In this paper, we established a weighted distribution for {xhp : h ∈ E(N, k)} for
fixed p.

Let (X,µ) be a measurable topological space. Let S1, S2, · · · , Si, · · · be a
family of finite subsets of X. Suppose each x ∈ Si has a weight wix ∈ R+

assigned to it. Let δx be the Dirac measure at x. Define

dµi =

∑
x∈Si

wixδx∑
x∈Si

wix
.

We say {Si} is {wi}-distributed with respect to measure dµ if

lim
i→∞

dµi = lim
i→∞

∑
x∈Si

wixδx∑
x∈Si

wix
= dµ.

This means for any continuous function f on X, we have

lim
i→∞

∫
X

f(x)dµi(x) = lim
i→∞

∑
x∈Si

wixf(x)∑
x∈Si

wix
=

∫
X

f(x)dµ(x).

When wi,x = 1, the definition is the same as the definition of equidistribution
given in Serre [Se2] Section 1.

In this paper, we will use Kuznietsov trace formula to obtain a certain
weighted distributions.

Suppose h ∈ S(N, k) is a Hecke eigenform with Fourier expansion

h(z) =
∞∑
r=1

are
2rπiz,Re z > 0.

Write ar(h) = ar. Let ‖ · ‖ be the Petersson norm on S(N, k) ([Ge] p.24 (2.6)).
We can assume k is even because S(N, k) is empty when k is odd. Define
polynomials Xn by

Xn(2 cosφ) =
sin(n+ 1)φ

sinφ
.

Let r be a positive integer. Let p be a fixed prime. Let rp = ordp r. Then we
have

Theorem 1.1 Let k be an even number ≥ 3. Consider the family of sets SN =
{(xhp) : h ∈ E(N, k)}, p - N with weight wrh = |ar(h)|2e−4πr

‖h‖2 assigned to xhp . Then
the family of sets {SN : p - N} is {wrh}-distributed with respect to∑

0≤i≤rp

X2i(x)dµ∞(x)

when N →∞.

The proof will be given at the end of this paper. A more general result is
given in Theorem 5.7.
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Corollary 1.2 Let k, SN , wrh be as above. If p - r, then the family of sets {SN :
p - N} , N →∞ is {wrh}-distributed with respect to the Sato-Tate measure.

Proof. If p - r, rp = ordp r = 0 and X0(x) = 1. The corollary follows easily. �

The technique used here can be generalized to other groups (example G =
GSp(2k)), refer to [Li] for the generalizations.

2 Construction of test functions

Let G = GL2. The unipotent group is N =
(

1 ∗
1

)
⊂ G. Write e =(

1
1

)
. Let Z be the center of G, let M be the diagonal subgroup of G.

Denote U = U/Z for any subset U of GL2. Define K∞ = {
(

cos θ sin θ
− sin θ cos θ

)
}.

When p < ∞, define Kp = GL2(Zp). Define K0(N)p = {
(
a b
c d

)
∈ Kp : c ≡ 0

(mod N)}, K0(N) =
∏
p<∞K0(N)p.

Let A be the adeles of Q. Let Afin be the finite component of A.
Let L2 be the Hilbert space of continuous functions ϕ on Z(A)G(Q)\G(A)

such that
∫
Z(A)G(Q)\G(A)

|f(g)|2dg < ∞. The subset of cuspidal functions in
L2 is denoted by L2

0. Let R be the right regular representation of G(A) on L2.
There is an embedding S(N, k) → L2

0 ([Ge], p. 42). The map is denoted by
f 7→ ϕf . Denote the image of the map by A(N, k).

Suppose (π, V ) is a representation of a measurable topological group G and
f is a continuous function on G. Define π(f)v =

∫
G
f(g)π(g)vdg.

We are going to construct a function f = f∞ffin on G(A) = G(R)×G(Afin).
The main property of this function is given in Proposition 2.1. The results
quoted below are well-known.

The function f∞ = fk is a function defined on GL2(R). It is the con-
jugate of a normalized matrix coefficient. Explicitly it is defined by fk(g) =
dπk

〈π(g)v0, v0〉 where πk is the discrete series representation of lowest weight k,
v0 is the lowest weight unit vector and dπk

is the formal degree. Explicitly we
can take

fk(g) =

 k−1
4π

2k(det g)k/2

((a+d)+i(b−c))k if g =
(
a b
c d

)
and det g > 0,

0 if det g < 0.
(2)

Refer to [Va] p192 or [KL] for the details.
Define ψ(N) = [Γ0(1) : Γ0(N)]. We take meas(Kp) = 1. One can easily

show that meas(K0(N)) = 1
[K0(1):K0(N)] = 1

ψ(N) .
If R be a ring, let M2(R) be all the 2× 2 matrix over R. Now we define

M(n,N) = {g =
(
a b
c d

)
∈M2(

∏
Zp) : det(g) ∈ n

∏
Z∗p and c ≡ 0 (mod N)},
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Define

fn(g) =

{
1

measK0(N)
= ψ(N) if g = zm, z ∈ Z(Afin),m ∈M(n,N),

0 otherwise.

Proposition 2.1 Suppose f = fkf
n, R(f) vanishes on A(N, k)⊥. On A(N, k)

it acts by
R(f)ϕh = ϕ

n−( k
2−1)Tnh

Proof. The idea of the proof can be found in [Ge] Lemma 3.7 and also [Ro]
Lemma 2.12. A complete proof can be found in [KL]. �

Corollary 2.2 Let h ∈ E(N, k), f = fkf
n then

R(f)ϕh = n1/2

∏
p|n

Xnp(xhp)

ϕh

Proof. Recall that n =
∏
pnp . We have T ′n =

∏
p T

′
pnp . By [Se2] Section 2

and Section 3 Lemma 1, T ′pnp = Xnp
(T ′p). The corollary follows easily from the

previous proposition. �

3 Kuznietsov trace formula

Let f be a continuous function on G(A). The kernel of R(f) is defined as

K(x, y) =
∑

γ∈G(Q)

f(x−1γy). (3)

Another way to express the kernel is

K(x, y) =
∑
φ

R(f)φ(x)φ(y),

here φ runs through an orthonormal basis of L2. When f = fkf
n, R(f) an-

nihilates A(N, k)⊥. We can sum over an orthonormal basis of A(N, k). An
orthonormal basis can be taken as {ϕh(x)

‖ϕh‖ : h ∈ E(N, k)}. It is easy to show that

K(x, y) =
∑

h∈E(N,k)

R(f)ϕh(x)
‖ϕh‖

ϕh(y)
‖ϕh‖

. (4)

Use θ to denote a character on Q\A. We can decompose θ into θ∞θfin. Here
θ∞(resp. θfin) is the infinite(resp. finite) component of θ. There exists r ∈ Q,
such that θ∞(x) = e2πirx. We assume r ∈ Z+ throughout the whole paper.
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Under this assumption θfin is trivial on
∏
p Zp. The character θ can also be

regarded as a character on N(Q)\N(A).
We factorize r into

∏
prp .

Normalize measure on Qp by taking meas(Zp) = 1. Define measure on A
by using the product measure. We can show that meas(Q\A) = 1. Measure on
N(A) is defined by identifying A with N(A).

From (3), the kernel K(x, y) is invariant under left multiplication of elements
in N(Q)×N(Q).

Kuznietsov trace formula is the equality obtained by expanding the following
integral using the two formulas (3) and (4)

KTF(f) =
∫
N(Q)\N(A)

∫
N(Q)\N(A)

K(n1, n2)θ(n−1
1 n2)dn1dn2. (5)

The integral is convergent because Q\A is compact. The expression obtained
using formula (3) is called the geometric side. Using formula (4) we obtain
the spectral side.

Proposition 3.1 When f = fkf
n, then KTF(f) is equal to

n1/2
∑

h∈E(N,k)

∏
p|n

Xnp
(xhp)

wrh,

recall that

wrh =
|ar(h)|2e−4πr

‖h‖2
.

Proof. Using (4) and Corollary 2.2

K(x, y) = n1/2
∑

h∈E(N,k)

∏
p|n

Xnp(xhp)

 ϕh(x)ϕh(y)
‖h‖2

.

Thus the spectral side of (5) is

n1/2
∑

h∈E(N,k)

∏
p|n

Xnp
(xhp)

 1
‖h‖2

∣∣∣∣∣
∫
N(Q)\N(A)

ϕh(n)θ(n−1)dn

∣∣∣∣∣
2

.

From [Ge] Chapter 3 lemma 3.6,∫
N(Q)\N(A)

ϕh(n)θ(n−1)dn =
{
are

−2πr if r ∈ Z+

0 otherwise.

The proposition follows easily. �

Let δ ∈ G. We define

Nδ = {(n1, n2) ∈ N ×N : n−1
1 δn2 ∼ δ};

here g1 ∼ g2 if g1 = zg2 for some z in the center. Denote the image of δ in
N(Q)\G(Q)/N(Q) by [δ]
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Proposition 3.2

KTF(f) =
∑

[δ]∈N(Q)\G(Q)/N(Q)

∫
Nδ(Q)\N(A)×N(A)

f(n−1
1 δn2)θ(n−1

1 n2)dn1dn2.

Proof. The geometric side of KTF(f)

=
∫
N(Q)\N(A)

∫
N(Q)\N(A)

∑
γ∈G(Q)

f(n−1
1 γn2)θ(n−1

1 n2)dn1dn2

=
∑

[δ]∈N(Q)\G(Q)/N(Q)

∫
N(Q)\N(A)

∫
N(Q)\N(A)

∑
γ∈N(Q)δN(Q)

f(n−1
1 γn2)θ(n−1

1 n2)dn1dn2.

=
∑
[δ]

∫ ∫ ∑
(m1,m2)∈Nδ(Q)\N(Q)×N(Q)

f(n−1
1 m−1

1 δm2n2)θ(n−1
1 n2)dn1dn2.

Replace n1 by m−1
1 n1, n2 by m−1

2 n2. Since θ is trivial on m1,m2 ∈ N(Q),
KTF(f) is equal to∑

[δ]∈N(Q)\G(Q)/N(Q)

∫
Nδ(Q)\N(A)×N(A)

f(n−1
1 δn2)θ(n−1

1 n2)dn1dn2.

�
Denote

Iδ(f) =
∫
Nδ(Q)\N(A)×N(A)

f(n−1
1 δn2)θ(n−1

1 n2)dn1dn2.

An element δ ∈ G(Q) is said to be admissible if the map

Nδ(A) → C : (n1, n2) 7→ θ(n−1
1 n2)

is trivial.

Lemma 3.3 If δ is not admissible, then Iδ(f) = 0.

Proof. Assume that δ is not admissible. Let (ν1, ν2) ∈ Nδ(A) such that
θ(ν−1

1 ν2) 6= 1. Replace n1, n2 by ν1n1, ν2n2 respectively.

Iδ(f) =
∫
Nδ(Q)\N(A)×N(A)

f(n−1
1 ν−1

1 δν2n2)θ(n−1
1 ν−1

1 ν2n2)dn1dn2.

Thus Iδ(f) = θ(ν−1
1 ν2)Iδ ⇒ Iδ = 0. �

Theorem 3.4 KTF(f) =∫
N(A)

f(n)θ(n)dn+
∑
µ∈Q∗

∫
N(A)

∫
N(A)

f(n−1
1

(
0 µ
1 0

)
n2)θ(n−1

1 n2)dn1dn2.
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Proof. By the Bruhat decomposition G = NM ∪ NM

(
0 1
1 0

)
N . Thus a

representative set of N(Q)\G(Q)/N(Q) is {
(
γ 0
0 1

)
: γ ∈ Q∗}

⋃
{
(

0 µ
1 0

)
:

µ ∈ Q∗}. From Theorem 3.2, the geometric side =
∑

[δ] Iδ. By Lemma 3.3,
Iδ(f) = 0 unless δ is admissible.

When δ =
(
γ 0
0 1

)
, simple calculation shows thatNδ = {(

(
1 γt

1

)
,

(
1 t

1

)
)}.

If δ is admissible, we have θ((γ−1)t) = 1 for any t ∈ A. Because θ is non-trivial,
this cannot happen unless γ = 1. Thus

Ie(f) =
∫
Nδ(Q)\N(A)×N(A)

f(n−1
1

(
1 0
0 1

)
n2)θ(n−1

1 n2)dn1dn2

=
∫

diagonal \N(A)×N(A)

f(n−1
1 n2)θ(n−1

1 n2)dn2dn1.

Letting m1 = n1,m2 = n−1
1 n2, the diagonal becomes (m1, e). The integral

becomes∫
N(Q)×e\N(A)×N(A)

f(m2)θ(m2)dm2dm1 =
∫
N(A)

f(m2)θ(m2)dm2.

When δ =
(

0 µ
1 0

)
, simple calculation shows that Nδ(Q) = {(e, e)}. Thus δ is

admissible. We have

Iδ(f) =
∫
N(A)×N(A)

f(n−1
1

(
0 µ
1 0

)
n2)θ(n−1

1 n2)dn1dn2.

We can prove the theorem by summing up all the terms. �

4 Evaluation of Integrals

Lemma 4.1 For u ∈ Q, θfin(u) = θ∞(−u) = e−2πru

Proof. We have 1 = θ(u) = θ∞(u)θfin(u). The lemma follows easily. �

The following lemmas show us how to evaluate fn. Suppose R is a ring, we
denote R∗2 = {x2 : x ∈ R∗}.

Lemma 4.2 Suppose g =
(
a b
c d

)
∈ G(Afin) and det(g) ∈ n

∏
Z∗p. Then

g ∈ supp fn if and only if g ∈M2(
∏

Zp) and c ≡ 0 mod N .

7



Proof. Write g = zm, z =
(
ζ

ζ

)
∈ Z(Afin), m ∈ M(n,N). Taking the

determinant on both sides, we see that ζ is in
∏

Z∗p. Thus z can be absorbed
into m, so g ∈ M(n,N). It is easy to see that g ∈ M(n,N) if and only if g
satisfies the conditions in the lemma. �

Lemma 4.3 Suppose g =
(
a b
c d

)
∈ G(Afin), then g is in supp fn only if

det g ∈ nA∗2
fin

∏
Z∗p.

Under this assumption, say det g = nζ2u for ζ ∈ A∗
fin, u ∈

∏
Z∗p. Let

z =
(
ζ

ζ

)
. Let m = z−1g =

(
m11 m12

m21 m22

)
. Then g ∈ supp fn if and only if

m ∈M2(
∏

Zp) and m21 ≡ 0 mod N .

Proof. If g is in supp fn, then g = zm with z =
(
ζ

ζ

)
∈ Z(Afin) and

m ∈M(n,N). Thus det g = ζ2 detm ∈ nA∗2
fin

∏
Z∗p. This proves the first part.

Suppose det g = nζ2u as stated in the lemma. Let z =
(
ζ

ζ

)
. Obvi-

ously g ∈ supp fn if and only if z−1g ∈ supp fn. One can easily show that
det z−1g = nu ∈ n

∏
Z∗p. The lemma follows easily from the above lemma. �

From now on we call the z =
(
ζ

ζ

)
appearing in the previous lemma a

z-part of g.
Define

True(statement) =
{

1 if statement is true,
0 otherwise.

Proposition 4.4 ∫
N(Afin)

fn(nfin)θfin(nfin)dnfin (6)

= ψ(N)n1/2 True(n1/2 ∈ Z and n1/2|r)

Proof. Write nfin =
(

1 t
0 1

)
. Its determinant is 1. From Lemma 4.3, nfin ∈

supp fn only if 1 ∈ nQ∗2
p Z∗p for all primes p. Thus np is even for all p. As a

result n ∈ ±Q∗2. We can assume n is positive. Write n = n′
2, n′ ∈ Z+.

Now a z-part of nfin can be z =
(
n′ 0
0 n′

)−1

. Let m = z−1nfin =
(
n′ n′t
0 n′

)
.

The lower left entry of m is 0, which is divisible by N . By Lemma 4.3, nfin is

in supp fn if and only if
(
n′ n′t
0 n′

)
∈M2(

∏
Zp). Or equivalently

t′ = n′t ∈
∏

Zp.
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Thus (6) is equal to

ψ(N)
∫
t∈n′−1 ∏

Zp

θfin(t)dt = ψ(N)
∫

∏
Zp

θfin(
t′

n′
)d
t′

n′
.

Because θfin is trivial on
∏

Zp, the integral (6) is equal to

ψ(N)n′
∑

s∈Z/n′Z

∫
s+n′

∏
Zp

θfin(
t′

n′
)dt′

= ψ(N)n′
∑

s∈Z/n′Z

e(−sr
n′

) meas(s+ n′
∏

Zp) = ψ(N)
∑

s∈Z/n′Z

e(
sr

n′
).

The result follows easily. �
Next, we evaluate∫

Afin×Afin

fn(n−1
1

(
0 µ
1 0

)
n2)θfin(n−1

1 )θfin(n2)dn1dn2. (7)

Define
Klu(n, θ∞) =

∑
s1,s2∈Z/uZ,s1s2≡n (mod u)

θ∞(
s1
u

)θ∞(
s2
u

).

Proposition 4.5 The integral (7) 6= 0 only if µ = ± n
u2 for some integer u ≡ 0

(mod N). Under this assumption, the integral (7) is equal to ψ(N) Klu(∓n, θ∞).

Proof. Let ni =
(

1 ti
1

)
, i = 1, 2.

n−1
1

(
0 µ
1 0

)
n2 =

(
−t1 µ− t1t2
1 t2

)
. (8)

Notice det(n−1
1

(
0 µ
1 0

)
n2) = −µ. From Lemma 4.3 , (8) ∈ supp fn only if

µ ∈ nQ∗2
p Z∗p for all p. Thus we have ordp(µ) ≡ np (mod 2) for all p. As a

result µ ∈ ±nQ2. Let µ = ±nζ2 for some ζ ∈ Q+. We can take z =
(
ζ

ζ

)
as the z-part. Write m = z−1n−1

1

(
0 µ
1 0

)
n2 =

(
∗ ∗
ζ−1 ∗

)
. By Lemma 4.3, (8)

is in supp fn only if ζ−1 ∈ Zp for all p. Hence ζ = 1/u for some u ∈ Z+. Let
µ = ± n

u2 , u ∈ Z.

m =
(
−ut1 ±n−(ut1)(ut2)

u
u ut2

)
.

Write t′1 = ut1, t′2 = ut2. By Lemma 4.3 again, (8) is in supp fn if and only if

t′1, t
′
2 ∈

∏
Zp, u ≡ 0 (mod N), t′1t

′
2 ≡ ±n (mod u).
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The integral (7) becomes∫
t1,t2

fn(
(
−t1 µ− t1t2
1 t2

)
)θfin(−t1)θfin(t2)dt1dt2

=
∫
t′1,t

′
2∈

∏
Zp,t′1t

′
2∈±n+u

∏
Zp

fn
(
−t′1 ∗
u t′2

)
θfin(− t

′
1

u
)θfin(

t′2
u

)d
t′1
u
d
t′2
u

= ψ(N)
∑

s1,s2∈Z/uZ,s1s2=±n

∫
(s1+u

∏
Zp)×(s2+u

∏
Zp)

θfin(− t
′
1

u
)θfin(

t′2
u

)d
t′1
u
d
t′2
u

= ψ(N)
∑

s1,s2∈Z/uZ,s1s2=±n

θ∞(
s1
u

)θ∞(−s2
u

) meas(
∏

Zp)2

= ψ(N)
∑

s1,s2∈Z/uZ,s1s2=∓n

θ∞(
s1
u

)θ∞(
s2
u

) = ψ(N) Klu(∓n, θ∞).

�

Proposition 4.6 When k ≥ 3,∫
N(R)

fk(n)θ∞(n)dn =

{
e−4πr(4πr)k−1

(k−2)! if r > 0,
0 otherwise.

(9)

Proof. Write n =
(

1 t
1

)
. By (2), the integral in (9) is equal to

k − 1
4π

∫ ∞

−∞

2k

(2 + it)k
e2πirtdt.

When r > 0, use the x-axis and the upper semi-circle as the contour. We
can get the result easily by evaluating the residue of the integrand at t = 2i.

When r < 0, use the x-axis and the lower semi-circle as the contour. The
result follows easily. �

Proposition 4.7 When k ≥ 3,∫
N(R)×N(R)

fk(n−1
1

(
0 µ
1 0

)
n2)θ∞(n−1

1 n2)dn1dn2 (10)

is non-zero only if r,−µ are all positive. Under this condition, the integral is
equal to

e−4πr(4πi)krk−1

2(k − 2)!
(−µ)

1
2 Jk−1

(
4πr

√
−µ

)
;

here Jk is the Bessel J function.
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Proof. When µ > 0, det(n−1
1

(
µ

1

)
n2) = −µ < 0. The value of fk at it is 0.

So we can assume µ < 0. Write ni =
(

1 ti
1

)
, i = 1, 2. By (2), (10) =

k − 1
4π

∫ ∞

−∞

∫ ∞

−∞

2k(−µ)k/2e2πir(t2−t1)

(−t1 + t2 + i(−1 + µ− t1t2))k
dt1dt2

First assume r > 0, evaluate the residue of the integrand at t2 = i+ µ
t1+i

, (10)
becomes

k − 1
4π

∫ ∞

−∞

2πi
(1− it1)k

2k(−µ)k/2(2πir)k−1e2πir(i+
µ

t1+i−t1)

(k − 1)!
dt1

Use x-axis and lower semi-circle as the contour, the integral can be calculated
by evaluating the residue of the integrand at t1 = −i. Notice that the path is
counterclockwise.

Refer to [Wa] Chapter 2.1, we have

e
1
2 ξ(τ−

1
τ ) =

∞∑
−∞

τnJn(ξ).

Take ξ = 4πr
√
−µ, τ = −i t1+i√

−µ , Be the residue theorem, (10) becomes

k − 1
4π

2πi
(−i)k

(−2πi)
2k(−µ)k/2(2πir)k−1

(k − 1)!
e−4πrJk−1(4πr

√
−µ)

(−i)k−1

(−µ)
k−1
2

.

We can get the result easily.
When r < 0, use the axis and upper semi-circle as the contour. It is easy to

show that (10) is 0. �

Theorem 4.8 Let k be an even number ≥ 3. Let n,N, r be any positive integers.
Factorize n into

∏
p p

np . Assume GCD(N,n) = 1. Define θ∞(x) = e2πirx, then
we have ∑

h∈E(N,k)

∏
p|n

Xnp
(xhp)

 |ar(h)|2e−4πr

‖h‖2

= True(n1/2 ∈ Z, n1/2 | r)e
−4πr(4πr)k−1

(k − 2)!
ψ(N) (11)

+
e−4πr(4πi)krk−1

2(k − 2)!
ψ(N)

∞∑
v=1

1
Nv

Jk−1(
4πn1/2r

Nv
) KlvN (n, θ∞). (12)

Proof. The spectral side is obtained by Proposition 3.1.
The geometric side is obtained by Theorem 3.4. The integral Ie(f) is the

product of (6) and (9). Using the results in Proposition 4.6 and Corollary 4.4,
we can get Ie(f).
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Let δ =
(

0 µ
1 0

)
. Then Iδ(f) is product of (7) and (10). By Proposition 4.5

(7) 6= 0 only if µ = ±n
u2 and N |u. Write u = Nv. By Proposition 4.7, (10) 6= 0

only if µ < 0. Thus
∑
δ Iδ(f) is a sum over {δ =

(
0 −n

(Nv)2

1 0

)
: v ∈ Z+}.

Multiply the results we obtained in Proposition 4.5 and Proposition 4.7.
Summing up all the terms in the geometric side. We can obtain the formula by
equating the spectral side and geometric side and then dividing both sides by
n1/2. �

5 Weighted distribution

Lemma 5.1
|Klu(n, θ∞)| ≤ un.

Proof. Obviously |Klu(n, θ∞)| ≤ |{s1s2 ≡ n (mod u)}|. It suffices to prove
|{s1s2 ≡ n (mod u)}| ≤ un for u = pup and n = pnp .

If np ≥ up, |{s1s2 ≡ n (mod u)}| ≤ u2 ≤ un.
Assume np < up.

|{s1s2 ≡ n (mod u)}| =
u∑
s=1

|{t : st ≡ n (mod u)}|

=
u∑

s=1,gcd(s,u)|n

gcd(s, u) =
np∑
sp=0

psp · |{s : ordp(s) = sp, 1 ≤ s ≤ u}|

≤
np∑
sp=0

psp
pup

psp
≤ (np + 1)pup ≤ nu

�
From [Iw] equation (5.16)

Jk(x) ≤ min{xk, x−1/2}.

Proposition 5.2 Let k be an even integer ≥ 3, then

1
ψ(N)

∑
h∈E(N,k)

∏
p|n

Xnp(xhp)w
r
h

= True(n1/2 ∈ Z, n1/2|r)e
−4πr(4πr)k−1

(k − 2)!
+O(

n(k+1)/2

Nk−1
).

Here the constant in the O-notation depends on θ only.
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Proof. Form the inequalities given above, (12) is

� e−4πr(4π)krk−1

2(k − 2)!
ψ(N)

∞∑
v=1

1
Nv

(
4πn1/2r

Nv

)k−1

(Nvn)

�r
ψ(N)
Nk−1

n(k+1)/2
∑
v

1
vk−1

�r
ψ(N)
Nk−1

n(k+1)/2.

The proposition follows easily from Theorem 4.8. �

Corollary 5.3 The average of weight

1
ψ(N)

∑
h∈E(N,k)

wrh =
e−4πr(4πr)k−1

(k − 2)!
+O(

1
Nk−1

).

Proof. Put n = 1 in the above proposition. �

Let p1, p2, · · · p` be distinct primes. For any prime p, let Ip be an interval
in R containing all the possible values of xhp for any Hecke eigenform h. By
Deligne’s result, we can take Ip = [−2, 2], but we don’t need this strong result.
We only need the fact that Ip is a finite interval. Refer to [Ro] Proposition 2.9
for the proof of this fact.

Denote the set of real valued continuous functions on I = Ip1 × Ip2 · · · × Ip`

by C(Ip1 × Ip2 · · · × Ip`
). Define a topological structure on it by using the L∞

norm ‖f‖∞ = max{|f(x)|}. Let k be an even integer ≥ 3, define a functional
FN on C(Ip1 × Ip2 · · · × Ip`

) by

FNf =

∑
h∈E(N,k) f(xhp1 , · · · , x

h
p`

)wrh∑
h∈E(N,k) w

r
h

Proposition 5.4

lim
N→∞,(N,p1,··· ,p`)=1

FNXnp1
× · · · ×Xnp`

=
∏̀
i=1

True(2|npi
, npi

/2 ≤ rpi
)

Proof. Let n = p
np1
1 · · · pnp`

` . From Corollary 5.2 and 5.3,

FNf =

∏`
i=1 True(2|npi

, npi
/2 ≤ rpi

) e
−4πr(4πr)k−1

(k−2)! +O(n
(k+1)/2

Nk−1 )
e−4πr(4πr)k−1

(k−2)! +O( 1
Nk−1 )

.

Letting N →∞, the proposition follows easily. �

Proposition 5.5 ∫
R

Xn(x)Xm(x)dµ∞(x) = δnm.
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Proof. A proof can be found in [Se2] Section 2.2.

π

2
δnm =

∫ π

0

sinnθ
sin θ

sin2 θ
sinmθ
sin θ

dθ

Recall Xn(x) = sinnθ
sin θ , x = 2 cos θ. Make a substitution x = 2 cos θ, we have

π

2
δnm =

∫ 2

−2

Xn(x)Xm(x)
sin θ

2
dx.

The proposition follows easily. �

Theorem 5.6 Define measure

dµi(x) =
∑

0≤n′≤rpi

X2n′(x)dµ∞(x). (13)

Also define

F(f) =
∫
Ip1

· · ·
∫
Ip`

f(x1, · · ·x`)dµ1(x1) · · · dµh(x`).

Then for any f ∈ C(Ip1 × Ip2 · · · × Ip`
),

lim
N→∞

FN (f) = F(f).

Proof. By the previous proposition∫
Ipi

Xnpi
(x)dµi(x) = True(2|npi , npi/2 ≤ rpi).

Take the product over i = 1, · · · ` and by proposition 5.4, we have

F(Xnp1
× · · · ×Xnp`

) = lim
N→∞,(N,p1,··· ,p`)=1

FN (Xnp1
× · · · ×Xnp`

).

One can easily show that |FN (f)| ≤ ‖f‖∞. Thus FN is a continuous linear
functional. Because degXn = n, the linear span of {Xn} consists of all the one
variable polynormals. Thus the linear span of {Xnp1

× · · · ×Xnp`
} consists of

all the possible polynomials. The theorem follows by the fact that polynomials
are dense in C(Ip1 × Ip2 · · · × Ip`

). �

Theorem 5.7 Let k be an even integer ≥ 3. Consider the family of sets SN =
{(xhp1 , · · · , x

h
p`

) : h ∈ E(N, k)}, (N, p1 · · · p`) = 1 with weight {wrh} assigned to
(xhp1 , · · · , x

h
p`

). Then the family of sets {SN , p - N} is {wrh}-distributed with
respect to the measure dµ1 · · · dµ` when N → ∞. Here µi is given by equation
(13).
The measure µi has the following properties : (a) it is supported on [−2, 2], (b)
it is a polynomial times the Sato-Tate measure on [−2, 2], (c) it depends only
on ordp(r).
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Proof. Follows easily from the previous theorem. �
Proof of 1.1. Take ` = 1 and p1 = p. �

References

[Ge] S. Gelbart, Automorphic Forms on Adele Groups. Annals of Mathematics
Studies, No. 83, Princeton University Press, 1975.

[Iw] H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in
Mathematics vol.17 American Mathematical Society,1991.

[KL] A. Knightly, C.C. Li, Traces of Hecke Operators. In preparation.

[Li] C.C. Li, Kuznietsov trace formula and asymptotic behavior of Hecke eigen-
values UCLA thesis, 2001.

[Ro] J. Rogawski, Modular forms, the Ramanujan conjecture, and the Jacquet-
Langlands correspondence. Discrete, Groups, Expanding Graphs and In-
variant Measures, by A. Lubotzky, Birhäuser, Basel,1994, pp. 135-176.
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