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Abstract. Using an explicit relative trace formula on GL(2), we derive a
formula for averages of modular L-values in the critical strip, weighting by
Fourier coefficients, Hecke eigenvalues, and Petersson norms. As an application
we show that a GRH holds for these averages as the weight or the level goes
to ∞. We also use the formula to give explicit zero-free regions of the form
| Im(s)| ≤ τ0 for some particular modular L-functions.
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1. Introduction

Let Sk(N,ω
′) denote the space of cusp forms h on Γ0(N) satisfying

h(
az + b

cz + d
) = ω′(d)−1(cz + d)k h(z) (

(
a b
c d

)
∈ Γ0(N)).

The Mellin transform of h is the analytic function

Λ(s, h) =

∫ ∞

0

h(iy)ys−1dy,

which converges absolutely for all s ∈ C ([Sh], p. 94). Write h(z) =
∑
r>0

ar(h)e
2πirz.

When Re(s) > 1 + k/2, we have additionally
∫ ∞

0

∑

r>0

|ar(h)e−2πryys−1|dy <∞.

Therefore for such s,

Λ(s, h) =
∑

r>0

ar(h)

∫ ∞

0

e−2πryys−1dy =
∑

r>0

ar(h)

∫ ∞

0

e−tts−1(2πr)−sdt

= (2π)−sΓ(s)
∑

r>0

ar(h)

rs
= (2π)−sΓ(s)L(s, h),

where L(s, h) is the Dirichlet series attached to h. The completed L-function Λ(s, h)
satisfies a functional equation relating values at s and k − s, which in the case of
N = 1 is simply

(1) Λ(s, h) = ikΛ(k− s, h).

Hence the critical line of the L-function is Re(s) = k/2. If h is a newform determin-
ing the cuspidal representation π, then Λ(s, π) = Λ(s+ k−1

2 , h), and Λ(s, π) satisfies
a functional equation relating its values at s and 1 − s.

The central values of L-functions have deep arithmetic significance. If the Hecke
eigenvalues are known, one can compute the central values of a particular L-function
using the approximate functional equation (see e.g. [Mi], §1.3.2). We can also use
the trace formula to get information about averages of L-values as h ranges through
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an orthogonal Hecke eigenbasis F for Sk(N,ω
′). In this paper, we will explicitly

compute such an average, with the L-values weighted by Hecke eigenvalues, Fourier
coefficients and Petersson norms.

The asymptotics of such averages have been studied widely. Duke showed that
when k = 2, N is prime, ω′ is trivial, and χ is a Dirichlet character unramified at
N ,

1

ψ(N)

∑

h∈F

a1(h)L(1, h⊗ χ)

‖h‖2
= 4π +O(N−1/2 logN),

where ψ(N) = [SL2(Z) : Γ0(N)], [Du]. Here we have normalized the Petersson
norm as in (2) below. With a more careful estimation, Ellenberg improved Duke’s
error term to O(N−1+ε), while at the same time allowing ar(h) in place of a1(h),
[El]. Of the many other generalizations of Duke’s work, we mention two: Akbary
extended it to weight k > 2 with an error term of Ok(N

−1/2(logN)k−1) [Ak], and
Kamiya further allowed composite N and L(1 + it, h ⊗ χ) with an error term of
Ot,k(N

−k/4) [Ka]. The method of Duke uses the Petersson trace formula. Another
approach, based on the Eichler-Selberg trace formula, was found by Royer (see §4.3
of [Ro]).

Here we consider the case k > 2. For the weighted averages we obtain an error
term of O(N−k/2) on the critical line. In fact, we give an explicit formula for the
average (Theorem 1.1). At the same time, we allow s to vary through the whole
critical strip. We will also give the asymptotic behavior of the average as k → ∞.

To state the main theorem, for h ∈ Sk(N,ω
′), let h− ∈ Sk(N,ω

′−1) denote

the “complex conjugate” of h, given by h−(z) =
∑
an(h)q

n. If ω′ is trivial, then

h− = h, and in general Λ(s, h−) = Λ(s̄, h).

Theorem 1.1. Let r,N, n, k ∈ Z+ with (n, N) = 1 and k > 2. Fix a Dirichlet
character ω′ of conductor dividing N , and suppose Sk(N,ω

′) 6= {0}. Let F be an
orthogonal basis for Sk(N,ω

′) consisting of eigenfunctions for the Hecke operator
Tn. Then for any s ∈ C with 1 < Re(s) < k− 1,

∑

h∈F

λn(h)ar(h)Λ(s, h−)

‖h‖2

=
ψ(N)2k−1Γ(s)(2πrn)k−s−1

(k − 2)!

∑

m| gcd(n,r)

m2s−k+1

ω′(m)

+ δN,1
2k−1Γ(k− s)(2πrn)s−1

(k− 2)! ik

∑

m| gcd(n,r)

mk−2s+1

+
ψ(N)(4πrn)k−1

Ns(k− 2)! eiπs/2

∑

a6=0,d>0
gcd(a,Nd)| gcd(r,n)

a−(k−s)d−s gcd(a,Nd)

ω′(a) e2πirℓ0/a
1f1(s; k;

2πirn
Nad ),

where Tnh = λn(h)h, ℓ0 is any integer satisfying ℓ0Nd ≡ n mod a, and

1f1(s; k;w) =
Γ(s)Γ(k− s)

Γ(k)
1F1(s; k;w)

for the confluent hypergeometric function 1F1(s; k;w) = 1 + s
k
w + s(s+1)

k(k+1)
w2

2! + · · · .
When a < 0, we take as = eiπs|a|s. Throughout we use the convention that

∑
m|n

is a sum over positive divisors of n.
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This theorem generalizes a result of Kohnen, who derived the special case n =
N = 1 using a Poincaré series-type argument ([Ko], p. 188). Our approach here is
quite different.

From its integral representation (cf. (17) on page 16), it follows that

|1f1(s; k; 2πirn/Nad)| ≤ 1.

Thus the sum over a, d is bounded independently of N (see Prop. 4.2 for a precise
bound), and we have the following.

Corollary 1.2. With notation as above and 1 < Re(s) < k− 1,

1

ψ(N)

∑

h∈F

λn(h)ar(h)Λ(s, h−)

‖h‖2

=
2k−1Γ(s)(2πrn)k−s−1

(k− 2)!

∑

m| gcd(n,r)

m2s−k+1

ω′(m)
+ O(N−Re(s)).

The implied constant is effective and depends only on k, n, r and s, uniformly for s
in compact subsets of the given strip.

According to the Grand Riemann Hypothesis, when h is a Hecke eigenform all
zeros of Λ(s, h) inside the critical strip k−1

2 < Re(s) < k+1
2 lie on the critical line

Re(s) = k/2. Using Theorem 1.1, we will show that a GRH holds for averages (see
also [Ko] for the N = 1 case). Note that Corollary 1.2 implies nonvanishing of the
average when N is large, at least when gcd(n, r) = 1. By the results of Section
4.1 in which we determine the asymptotic behavior as k → ∞, the average is also
nonzero when k is large. To state the result, we shift the L-functions so that the
critical strip becomes 0 ≤ Re(s) ≤ 1, independent of k.

Corollary 1.3. Assume N > 1, k > 3, gcd(n, r) = 1, and that Sk(N,ω
′) 6= {0}.

For τ0 > 0, let R be the rectangle consisting of s with 0 ≤ Re(s) ≤ 1 and | Im(s)| ≤
τ0. Then there exist constants Ck, CN > 0 depending only on R, n and r, such that
if either k > Ck or N > CN , the sum

∑

h∈F

λn(h)ar(h)Λ(s+ k−1
2 , h−)

‖h‖2

is nonzero for every s ∈ R. In particular, for any s ∈ R there exists an eigenform
h ∈ Sk(N,ω

′) such that λn(h), ar(h) and Λ(s+ k−1
2 , h) are all nonzero.

Some of the hypotheses of Corollary 1.3 can be weakened with minor modifica-
tions. To allow gcd(n, r) > 1, we simply need to exclude the left edge of the strip.
Thus the boundary of R should be shrunk to δ ≤ Re(s) ≤ 1 for any 0 < δ < 1/2.
If in addition we exclude the right edge by considering δ ≤ Re(s) ≤ 1 − δ for such
δ, then the statement is also valid for k = 3. When N = 1, the situation is a little
more delicate because, if s lies on the critical line, the first two terms in the formula
for the average may cancel each other out and we cannot say anything. Indeed if
k ≡ 2 mod 4, the L-values themselves vanish at s = k/2 because of the functional
equation (1). So when N = 1 we must assume that R is a compact region which
does not meet the critical line Re(s) = 1

2 .
Suppose it happens that dimSk(N,ω

′) = 1. Then the theorem gives a com-
putable formula for the values of the L-function of the cusp form. Using an effective
version of Corollary 1.3, we obtain zero-free regions for several such L-functions in



4 ANDREW KNIGHTLY AND CHARLES LI

Section 4.2. As a final illustration, we show how to use the formula to compute
some familiar data, namely values of Ramanujan’s τ -function. This is achieved by
taking a quotient of two different averages. The resulting expression can be esti-
mated to any desired precision using partial sum approximations, and since τ(r) is
known to be an integer, we can pinpoint its value with just a few terms.

Theorem 1.1 is proven using a relative trace formula on GL(2). We start with
a Hecke operator and integrate its associated kernel over the group N ×M , where
N is unipotent and M is diagonal. This is a hybrid of the techniques of the papers
[Li], [KL1] (which used N×N) and [RaRo] (which used M×M). The paper [RaRo]
of Ramakrishnan and Rogawski gives an asymptotic formula for certain averages

of the form
∑

h∈F
λpn (h)Λ(k/2,h⊗χ)Λ(k/2,h)

‖h‖2 , which yields a weighted equidistribution

result for the Hecke eigenvalues. They use a regularization procedure since they
assert that the terms on their geometric side are not absolutely convergent. Thus
the replacement here of just one factor of M by the unipotent group N (of compact
quotient) is enough to give an absolutely convergent trace formula.

We mention that Feigon and Whitehouse refined the method of [RaRo] in many
cases by using the Jacquet-Langlands correspondence to avoid the convergence
issues inherent to GL(2), [FW]. They obtain closed formulas for the averages at
the central point, over a totally real field.

A version of Theorem 1.1 involving twisted L-functions Λ(s, h ⊗ χ) should be
obtainable by similar methods, using a test function as in [RaRo]. Of course, the
presence of a nontrivial character χ will only help the convergence of the trace
formula.

We would like to thank David Bradley and George Knightly for their helpful
comments on the hypergeometric function. The numerical calculations in Section 4
were made using Mathematica. The first author was supported by the University of
Maine Office of the Vice President for Research, and NSA grant H98230-06-1-0039.

2. Notation and preliminaries

We briefly recall the notation and test function of [KL2], which contains proofs
of the various facts mentioned in this section. Let A,Afin be the adeles and finite
adeles of Q, and let G = GL(2). We write G for G/Z, where Z is the center. Fix
a level N ≥ 1 and a Dirichlet character ω′ of conductor dividing N . For a weight
k > 2, let Sk(N,ω

′) denote the space of cusp forms satisfying

h(γz) = ω′(γ)−1j(γ, z)kh(z) (γ ∈ Γ0(N)).

Here ω′(
(
a b
c d

)
) = ω′(d) and

j(
(
a b
c d

)
, z) = (ad− bc)−1/2(cz + d) (

(
a b
c d

)
∈ G(R)+).

Using A∗ = Q∗(R∗
+ × Ẑ∗), define

ω : A∗ → Ẑ∗ → (Z/NZ)∗ → C∗,

where the last arrow is ω′. For an idele x, let xN denote the idele which agrees
with x at the places p|N , and which is 1 at all other places. Then for any integer
d prime to N ,

ω(dN ) = ω′(d).
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To each h ∈ Sk(N,ω
′) we associate φh ∈ L2

0(ω) = L2
0(G(Q)\G(A), ω) by using

strong approximation:

φh(γ(g∞ × k)) = j(g∞, i)
−kh(g∞(i))

for γ ∈ G(Q), g∞ ∈ G(R)+ and k ∈ K1(N) = {
(
a b
c d

)
∈ G(Ẑ)| c, d− 1 ∈ N Ẑ}.

We normalize the Petersson norm by

(2) ‖h‖2 =
1

ψ(N)

∫

Γ0(N)\H
|h(z)|2yk dx dy

y2
.

If we normalize Haar measure on G(A) so that meas(G(Q)\G(A)) = π/3, then the
Petersson norm corresponds to the L2-norm and the map h 7→ φh is an isometry. We
normalize Haar measure on A so that meas(Q\A) = 1. We take Lebesgue measure

dx on R and d∗y = dy
|y| on R∗. On A∗

fin we normalize so that meas(Ẑ∗) = 1.

Fix n ∈ Z+ with gcd(n, N) = 1, and define a test function f = f∞ × f n as
follows. Define

M(n, N) = {g =
(
a b
c d

)
∈M2(Ẑ)| det g ∈ nẐ∗ and c ≡ 0 mod N Ẑ}.

The support of ffin = f n is the set Z(Afin)M(n, N) = Z(Q+)M(n, N). By defini-
tion,

f n(zQm) =
ψ(N)

ω(m)
(zQ ∈ Z(Q+), m ∈M(n, N)),

where for m =
(
a b
c d

)
∈ M(n, N) we define ω(m) = ω(dN ). We take f∞(g) =

1
dk
〈πk(g)v0, v0〉, where πk is the weight k discrete series of GL2(R) with formal

degree dk = 4π
k−1 and lowest weight unit vector v0. Explicitly, if g =

(
a b
c d

)
, then

f∞(g) =

{
(k−1)

4π
det(g)k/2(2i)k

(−b+c+(a+d)i)k if det(g) > 0,

0 otherwise

(see [KL2], Theorem 14.5). By construction, f(zg) = ω(z)−1f(g) for z ∈ Z(A).
This function f is integrable precisely when k > 2. Hence for such k it defines

an operator R(f) on L2(ω) by

R(f)φ(x) =

∫

G(A)

f(g)φ(xg)dg.

Then as shown in [KL2], we have the following commutative diagram:

L2(ω)
n

k

2−1R(f)- L2(ω)

Sk(N,ω
′)

orthog. proj.
? Tn - Sk(N,ω

′)

6

where Tn is the classical Hecke operator. Letting F be any orthogonal basis for
Sk(N,ω

′), the kernel of R(f) is the function on G(A) ×G(A) given by

(3) K(g1, g2) =
∑

γ∈G(Q)

f(g−1
1 γg2) =

∑

h∈F

R(f)φh(g1)φh(g2)

‖φh‖2
.

Lastly, we let θ : A → C∗ denote the standard character of A. It is defined by

θ∞(x) = e−2πix, x ∈ R,



6 ANDREW KNIGHTLY AND CHARLES LI

and
θp(x) = e2πirp(x), x ∈ Qp,

where rp(x) ∈ Q is the principal part of x, a number with p-power denominator
characterized (up to Zp) by x ∈ rp(x)+Zp. Then θ is trivial on Q and θfin =

∏
p θp

is trivial precisely on Ẑ. In particular, for any q ∈ Q, θfin(q) = θ∞(q)−1 = e2πiq.
The characters of Q\A are parametrized by r ∈ Q via

θr(x) = θ(−rx).

3. Proof of the theorem

3.1. Spectral side. The theorem is proven by computing the following

(4)

∫

Q∗\A∗

∫

Q\A
K(

(
1 x
0 1

)
,

(
y 0
0 1

)
) θr(x)|y|s−k/2dx d∗y

using the two expressions for the kernel (3). We will see presently that the integral
(4) is absolutely convergent for all s.

For the spectral side, choose F in (3) to be an orthogonal basis of eigenvectors
of Tn. Then R(f)φh = n

1−k/2λn(h)φh for h ∈ F , so (4) is equal to

(5)
∑

h∈F

n
1−k/2λn(h)

‖φh‖2

∫

Q\A
φh(
(

1 x
1

)
)θr(x)dx

∫

Q∗\A∗

φh(
( y

1

)
)|y|s−k/2d∗y

=
n
1−k/2

e2πr

∑

h∈F

λn(h)ar(h)Λ(s, h−)

‖h‖2
,

by the following lemma.

Lemma 3.1. For r ∈ Q,
∫

Q\A
φh(
(

1 x
1

)
) θr(x)dx =

{
e−2πrar(h) if r ∈ Z+,

0 otherwise

and ∫

Q∗\A∗

φh(
( y

1

)
) |y|s−k/2d∗y = Λ(s, h−).

Proof. For a proof of the first statement, see [KL2], Corollary 12.4. For the

second, note that φh(
( y

1

)
) = yk/2h(iy) when y ∈ R∗

+. Furthermore, h(iy) =∑
ar(h)e

−2πry = h−(iy). We can integrate over the fundamental domain R∗
+× Ẑ∗.

The integrand is invariant under Ẑ∗, which has measure 1. Thus
∫

Q∗\A∗

φh(
( y

1

)
)|y|s−k/2d∗y =

∫ ∞

0

h−(iy)ys−1dy = Λ(s, h−).
�

The two integrals in (5) are absolutely convergent for all s, so we have the
following.

Proposition 3.2. The double integral (4) is absolutely convergent for all s ∈ C.
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3.2. Geometric side. On the geometric side, we use the formalism of Jacquet’s
relative trace formula. Let N be the upper triangular unipotent subgroup of
G, and let M be the diagonal subgroup. Let M = M/Z, where Z is the cen-
ter. Setting H = N × M , the integral (4) is taken over H(Q)\H(A). Using
K(n,m) =

∑
γ∈G(Q) f(n−1γm), we would like to pull the sum out of (4); however

the individual terms f(n−1γm) are not well-defined modulo H(Q). We have to
break G(Q) into H(Q)-orbits and then sum over these orbits. The action of H is
(n,m) · γ = n−1γm. For δ ∈ G(Q), its orbit is

[δ] = {
(

1 −x
1

)
δ
( y

1

)
|x ∈ Q, y ∈ Q∗} = {n−1δm| (n,m) ∈ Hδ(Q)\H(Q)},

where Hδ is the stabilizer of δ. It is easy to check that in fact Hδ = {1} for any δ.
Thus the geometric expression for (4) is equal to

(6)
∑

[δ]

∫

A∗

∫

A

f(
(

1 −x
1

)
δ
( y

1

)
)θr(x)|y|s−k/2dx d∗y.

To justify this manipulation we have to show that (6) converges absolutely.

Proposition 3.3. Suppose 1 < Re(s) < k− 1. Then
∑

[δ]

∫

A∗

∫

A

∣∣∣f(
(

1 −x
1

)
δ
( y

1

)
)θr(x)|y|s−k/2

∣∣∣ dx d∗y <∞.

Thus for such s, the geometric side (6) converges absolutely and equals the spectral
side (5).

We postpone the proof of the proposition until Section 3.3 below. Assuming it for
now, let Iδ(f) denote the double integral attached to δ in (6). By the proposition,
Iδ(f) is absolutely convergent on the given strip. We just need to determine the set
of δ and compute each of these geometric integrals. We assume throughout that
the hypothesis of the proposition is satisfied.

The set of orbits [δ] is in one-to-one correspondence with N(Q)\G(Q)/M(Q).
By the Bruhat decomposition

G(Q) = N(Q)M(Q) ∪N(Q)
(

1
−1

)
N(Q)M(Q),

a set of representatives is given by

{1} ∪ {
(

0 1
−1 t

)
| t ∈ Q}.

Proposition 3.4. When δ = 1, the integral

I1(f) =

∫

A∗

∫

A

f(

(
y −x
0 1

)
)θ(rx)dx|y|s−k/2d∗y

converges absolutely on 0 < Re(s) < k− 1, and for such s it is

=
n
1−k/2

e2πr
ψ(N)2k−1Γ(s)(2πrn)k−s−1

(k− 2)!

∑

m| gcd(n,r)

m2s−k+1

ω′(m)
.

Proof. The absolute convergence will be proven in Prop. 3.10 below. For s as given,
we factorize the integral as I1(f)∞I1(f)fin. To start with,

I1(f)fin =

∫

A∗
fin

∫

Afin

f n(

(
y −x
0 1

)
)θfin(rx)dx|y|s−k/2

fin d∗y.
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The value of f n is nonzero if and only if there exists m ∈ Q+ such that
(
my −mx
0 m

)
∈

M(n, N). In particular, m ∈ Ẑ ∩ Q+ = Z+. Furthermore,

(i) my ∈ Ẑ

(ii) m2y ∈ nẐ∗

(iii) mx ∈ Ẑ.

Together, the first two conditions imply that m|n. Conversely, if m|n, condition (ii)
implies condition (i). Assuming that m|n and y satisfies (ii), we have

∫

Afin

f n(
(
y −x
0 1

)
)θfin(rx)dx =

ψ(N)

ω(mN )

∫

1
m

bZ

θfin(rx)dx.

Because m|n, it follows that (m,N) = 1, so ω(mN ) = ω′(m). Hence the above is

=

{
mψ(N)/ω′(m) if m|r
0 otherwise.

Thus

∫

Afin

f n(

(
y −x
0 1

)
)θfin(rx)dx =






mψ(N)/ω′(m) if y ∈ n

m2 Ẑ
∗ for

some m| gcd(n, r),

0 otherwise.

We note that if such m exists, it is uniquely determined by y. Now

I1(f)fin =
∑

m| gcd(n,r)

mψ(N)

ω′(m)

∫

n

m2
bZ∗

|y|s−k/2
fin d∗y = ψ(N)

∑

m| gcd(n,r)

m(m2/n)s−k/2

ω′(m)
.

For the infinite part, recall that f∞ vanishes on matrices with negative determi-
nant. Thus

I1(f)∞ =

∫ ∞

0

∫

R

f∞(

(
y −x
0 1

)
)θ∞(rx)dx |y|s−k/2d∗y.

We have∫

R

f∞(
(
y −x
0 1

)
)θ∞(rx)dx =

k− 1

4π
yk/2(2i)k

∫ ∞

−∞

e−2πirx

(x+ (y + 1)i)k
dx.

Use a clockwise semicircular contour integral in the lower complex half-plane. The
integrand has a pole at x = −(y + 1)i inside the contour. By the residue theorem,
the above is

= −k− 1

4π
yk/2(2i)k

2πi

(k− 1)!

dk−1

dxk−1

∣∣∣∣
x=−(y+1)i

e−2πirx

= −k− 1

4π
yk/2(2i)k

2πi

(k− 1)!
(−2πir)k−1e−2πr(y+1) =

(4πr)k−1

(k− 2)! e2πr
yk/2e−2πry.

Therefore using Re(s) > 0,

I1(f)∞ =
(4πr)k−1

(k− 2)!e2πr

∫ ∞

0

ys−1e−2πrydy =
(4πr)k−1

(k − 2)!e2πr
(2πr)−sΓ(s).

All together we have

I1(f) =
ψ(N)2k−1Γ(s)nk/2−s(2πr)k−s−1

(k− 2)! e2πr

∑

m| gcd(n,r)

m2s−k+1

ω′(m)
.

�
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Next we need to compute Iδ(f) for δ =
(

0 1
−1 t

)
with t ∈ Q. We begin with the

special case t = 0.

Proposition 3.5. If δ =
(

1
−1

)
, then

(7) Iδ(f) =

∫

A∗

∫

A

f(

(
yx 1
−y 0

)
) θ(rx)dx|y|s−k/2d∗y

converges absolutely for 1 < Re(s) < k. For such s, Iδ(f) = 0 unless N = 1. When
N = 1,

Iδ(f) =
n
1−k/2

e2πr
2k−1Γ(k− s)(2πrn)s−1

(k− 2)! ik

∑

m| gcd(n,r)

mk−2s+1.

Proof. For the absolute convergence, see Prop. 3.10 below. The value of f n in

Iδ(f)fin =
∫
A∗

fin

∫
Afin

f n(
( yx 1
−y 0

)
)θfin(rx)dx|y|s−k/2

fin d∗y is nonzero if and only if there

exists m ∈ Q+ such that
( myx m
−my 0

)
∈ M(n, N). This means m ∈ Z+, my ∈ N Ẑ

and m2y ∈ nẐ∗. It follows that N |n, which is only possible if N = 1. Assuming

N = 1, we have m|n. The last requirement for nonvanishing is x ∈ 1
my Ẑ = m

n
Ẑ, in

which case f n(
( yx 1
−y 0

)
) = 1. Hence for fixed m|n and y ∈ n

m2 Ẑ
∗,

∫

Afin

f n(

(
yx 1
−y 0

)
) θfin(rx)dx =

∫

m
n

bZ

θfin(rx)dx =

{
n/m if rm

n
∈ Ẑ

0 otherwise.

Now we have

Iδ(f)fin =
∑

m|n,
n

m
|r

n

m

∫

n

m2
bZ

∗
|y|s−k/2

fin d∗y =
∑

m|n,
n

m
|r

n

m
(m2/n)s−k/2

= n
k/2−s+1

∑

m|n,
n

m
|r

m2s−k−1 = n
k/2−s+1

∑

m| gcd(n,r)

(n/m)2s−k−1

= n
s−k/2

∑

m| gcd(n,r)

mk−2s+1.

For the infinite part Iδ(f)∞ =
∫
R

∗

∫
R
f∞(

( yx 1
−y 0

)
)θ∞(rx)dx|y|s−k/2d∗y, as before

we can assume y > 0. We have
∫

R

f∞(

(
yx 1
−y 0

)
)e−2πirxdx =

k − 1

4π
yk/2(2i)k

∫ ∞

−∞

e−2πirx

(−1 − y + (yx)i)k
dx

=
(k− 1)(2i)k

4π
yk/2(iy)−k

∫ ∞

−∞

e−2πirx

(x + (1+y
y )i)k

dx.

Take a clockwise semicircular contour integral in the lower half-plane. The inte-
grand has a pole at x = −i(1 + 1

y ). By the residue theorem the above is

= − (k− 1)2k

4π
y−k/2 2πi

(k− 1)!

dk−1

dxk−1

∣∣∣∣
x=−i(1+ 1

y )

e−2πirx

=
−i2k−1

(k − 2)!
y−k/2(−2πir)k−1e−2πr(1+1/y)

=
(4πr)k−1e−2πr

(k− 2)! ik
y−k/2e−2πr/y.
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Therefore

Iδ(f)∞ =
(4πr)k−1e−2πr

(k− 2)! ik

∫ ∞

0

ys−k−1e−2πr/ydy.

For any α > 0,
∫∞
0
tw−1e−α/tdt = αwΓ(−w) when Re(w) < 0, so we get

Iδ(f) =
(4πr)k−1e−2πr

(k − 2)! ik
(2πr)s−kΓ(k − s)ns−k/2

∑

m| gcd(n,r)

mk−2s+1.

�

For the case of δ =
(

0 1
−1 t

)
with t ∈ Q∗, we use the following lemma, which is

very easy to prove.

Lemma 3.6. For any n,m, r ∈ Ẑ,

rẐ ∩ (n+mẐ) =

{
rc0 + rm

gcd(r,m) Ẑ if gcd(r,m)|n
∅ if gcd(r,m) ∤ n,

where c0 ∈ Z is any fixed solution to rc0 ≡ n mod mẐ.

We also need to recall the definition of the confluent hypergeometric function

1F1(s; k;w) =
∞∑

m=0

(s)m
(k)m

wm

m!

where (s)0 = 1 and for m > 0, (s)m = s(s + 1)(s + 2) · · · (s + m − 1). This is
absolutely convergent for all s, k, w ∈ C, except when k is a nonpositive integer.
We have the following useful integral representation:

(8) 1F1(s; k;w) =
Γ(k)

Γ(k − s)Γ(s)

∫ 1

0

ewtts−1(1 − t)k−s−1dt (Re(k) > Re(s) > 0)

(see [Sl], §3.1).

Proposition 3.7. If δ =
(

0 1
−1 t

)
for t ∈ Q∗, then Iδ(f) is absolutely convergent

when 0 < Re(s) < k. It vanishes unless t ∈ N
n
Z. For such t, write t = N

n
b. Then

Iδ(f) =
(4πr)k−1ψ(N)nk/2

(k − 2)! eiπs/2e2πrNs
bs−k

1f1(s; k;
2πirn
Nb )

∑

d|b
gcd(b/d,Nd)| gcd(r,n)

gcd(b/d,Nd)

d2s−kω′(b/d)
e−

2πirℓ0
b/d ,

where ℓ0 ∈ Z is any integer satisfying ℓ0(Nd) ≡ n mod (b/d), and

1f1(s; k;w) =
Γ(s)Γ(k − s)

Γ(k)
1F1(s; k;w).

When b < 0, we take bs−k = |b|s−keiπ(s−k).

Proof. The absolute convergence will be proven in Prop. 3.9 below. We can fac-
torize the integral as Iδ(f) = Iδ(f)∞Iδ(f)fin. First we compute

Iδ(f)fin =

∫

A∗
fin

∫

Afin

f n(

(
yx 1 − tx
−y t

)
)θfin(rx)dx|y|s−k/2d∗y.

Suppose f n(
(
yx 1−tx
−y t

)
) 6= 0. Then there exists m ∈ Q+ such that
(
myx m−mtx
−my mt

)
∈M(n, N).
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This means:
(i) my ∈ N Ẑ (iv) mxy ∈ Ẑ

(ii) m2y ∈ nẐ∗ (v) m−mtx ∈ Ẑ.

(iii) mt ∈ Ẑ

The first two conditions imply that m = n

Nd for some integer d > 0, and that

y ∈ N2d2

n
Ẑ∗. By the third condition, t ∈ Nd

n
Ẑ, or equivalently, t ∈ N

n
Z and

d| nN t. This proves the first assertion. Condition (iv) is now equivalent to x ∈ 1
Nd Ẑ.

Conversely, if m, y, t, x are given in this way, they will satisfy (i)-(iv). Thus we have

Iδ(f)fin =
∑

d| n

N t

n
s−k/2

(Nd)2s−k

∫

N2d2

n

bZ
∗

∫

1
Nd

bZ

f n(
( yx 1−tx
−y t

)
)θfin(rx)dx d

∗y.

Write t = N
n
b for nonzero b ∈ dZ. Then mt = b/d, so the fifth condition is

equivalent to x ∈ n

Nb + d
b Ẑ. Thus the inner integral is taken over

x ∈ 1

Nd
Ẑ ∩ (

n

Nb
+
d

b
Ẑ).

By Lemma 3.6 (multiply the above through by Nb), this set is nonempty if and

only if gcd(b/d,Nd)|n, in which case it is equal to 1
Ndc0 + 1

gcd(b/d,Nd) Ẑ, where c0 is

any solution to (b/d)c0 ≡ n mod Nd.
Note that gcd(b/d,Nd)|n implies that b/d is prime to N . Therefore the value of

f n in the integrand is ψ(N)
ω′(b/d) . Thus

Iδ(f)fin =
∑

d|b
gcd(b/d,Nd)|n

n
s−k/2

(Nd)2s−k

ψ(N)

ω′(b/d)

∫

1
Nd c0+

1
gcd(b/d,Nd)

bZ

θfin(rx)dx

(9) =
∑

d|b
gcd(b/d,Nd)|n

n
s−k/2

(Nd)2s−k

ψ(N)

ω′(b/d)
θfin(

rc0
Nd

)

∫

1
gcd(b/d,Nd)

bZ

θfin(rx)dx

=
ψ(N)ns−k/2

N2s−k

∑

d|b
gcd(b/d,Nd)| gcd(r,n)

gcd(b/d,Nd)

d2s−kω′(b/d)
e2πirc0/Nd.

For the archimedean part, the inner integral is
∫

R

f∞(
(
yx 1−tx
−y t

)
)e−2πirxdx

=
k− 1

4π
(2i)kyk/2

∫ ∞

−∞

e−2πirx

(tx− 1 − y + (yx+ t)i)k
dx

=
k− 1

4π
(2i)kyk/2(t+ iy)−k

∫ ∞

−∞

e−2πirx

(x− 1+y−it
i(y−it) )k

dx.

The integrand has a pole at x = −i(1 + 1
y−it ) in the lower half-plane. Using a

clockwise lower semicircular contour integral, this is

= −k− 1

4π
(2i)k

2πi

(k− 1)!
(−2πir)k−1yk/2(i)−k(y − it)−ke−2πr(1+ 1

y−it ).

Thus

Iδ(f)∞ =
(4πr)k−1

(k− 2)! ike2πr

∫ ∞

0

ys−1(y − it)−ke−2πr/(y−it)dy.
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This has an essential singularity at y = it. We define ys−1 as a holomorphic function
of y by taking the principal value of log y on the positive real axis, and making a
branch cut along the positive imaginary axis if t > 0 or the negative imaginary axis
if t < 0. Now pulling out t and making a change of variables, we get

Iδ(f)∞ =
(4πr)k−1ts−k

(k− 2)! ike2πr

∫ ±∞

0

ys−1(y − i)−ke−2πr/t(y−i)dy,

where the sign in the upper limit is the sign of t, and by our choice of branch,
ts−k = |t|s−keiπ(s−k) if t < 0. In the notation of the next lemma below, the integral
is G(s, k, r/t). By the result of the lemma and setting t = Nb/n, this gives

Iδ(f)∞ =
(4πr)k−1Ns−k

(k− 2)! eiπs/2e2πrns−k

bs−k
1f1(s; k; 2πirn/Nb)

e2πirn/Nb
.

When we multiply this by Iδ(f)fin, we can combine the terms

e−2πirn/Nbe2πirc0/Nd = e2πir(c0(b/d)−n)/Nb.

Writing c0(b/d) − n = −Ndℓ0 for some ℓ0 ∈ Z, we have Ndℓ0 ≡ n mod (b/d), and
the above is equal to e−2πirℓ0/(b/d). The result now follows. �

Lemma 3.8. For s, w ∈ C and k ∈ Z+, define

G(s, k, w) =

∫ ∞

0

ys−1(y − i)−ke−2πw/(y−i)dy.

This function converges absolutely for 0 < Re(s) < k. On this strip we can represent
G(s, k, w) in terms of the confluent hypergeometric function:

G(s, k, w) = ike−iπs/2e−2πiw Γ(s)Γ(k− s)

Γ(k)
1F1(s; k; 2πiw).

Furthermore, the integral defining G is unchanged if we replace ∞ by −∞.

Proof. Let t = 1 + i
y−i , so that y − i = −i

1−t . This linear fractional transformation

takes the positive real axis to the upper semicircle C of radius 1/2 centered at
z = 1/2. Then dy = −i

(1−t)2 dt and

G(s, k, w) =

∫

C

( −it
1 − t

)s−1 ( −i
1 − t

)−k

e2πiw(t−1) −i
(1 − t)2

dt.

We define ys−1 = e(s−1) log y by taking the principal value of log y for y > 0, and
making a cut along the positive imaginary axis in the y-plane. This cut corresponds
in the t-plane to cuts on the real axis from 0 to −∞ and from 1 to ∞. We choose
log(−i) = −iπ/2, and choose the principal branches of log(t) and log(1 − t). Then
for t ∈ (0, 1), −3π/2 < arg(−it/(1 − t)) < π/2 and therefore these choices are
compatible with the choice of log y. Now

G(s, k, w) = e−isπ/2(−i)−ke−2πiw

∫

C

e2πiwtts−1(1 − t)k−s−1dt.

The integrand is holomorphic in t and single-valued in the cut plane, and by
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Cauchy’s theorem, its integral around the following contour vanishes:

C

ε 1 − ε

Using the fact that 0 < Re(s) < k, it is straightforward to show that the contribu-
tion along the small arcs goes to 0 as ε → 0. It follows that the integral along C
can instead be taken along the real axis, so

G(s, k, w) = ike−iπs/2e−2πiw

∫ 1

0

e2πiwtts−1(1 − t)k−s−1dt.

= ike−iπs/2e−2πiw Γ(k− s)Γ(s)

Γ(k)
1F1(s; k; 2πiw)

by (8). If the upper limit of G is replaced by −∞, then t will instead traverse the
lower semicircle C from 0 to 1, which can likewise be moved to the real axis. In fact
a more general path independence property can be proven in a similar way. �

3.3. Proof of Proposition 3.3. For each δ, we set

Iabsδ (f) =

∫

A∗

∫

A

∣∣∣f(
(

1 −x
1

)
δ
( y

1

)
)θr(x)|y|s−k/2

∣∣∣ dx d∗y.

Because f n is compactly supported modulo the center and bounded by ψ(N), the
finite part Iabsδ (f)fin converges for all s to a value depending on δ. Thus we primarily
need to consider the infinite part

Iabsδ (f)∞ =

∫ ∞

0

∫ ∞

−∞

∣∣f∞(
(

1 −x
1

)
δ
( y

1

)
)
∣∣ dx yRe(s)−k/2−1dy.

We will repeatedly use the fact that for g =
(
a b
c d

)
∈ G(R)+,

(10) |f∞(g)| =
k− 1

4π

det(g)k/22k

(a2 + b2 + c2 + d2 + 2 det(g))k/2
.

This follows easily from the explicit formula for f∞.

Proposition 3.9. Let δt =
(

0 1
−1 t

)
for t ∈ Q∗. Then if 0 < Re(s) < k,

(a) Iabsδt
(f) <∞

(b) Iabsδt
(f)∞ ≪ |t|Re(s)−k.

Furthermore, if 1 < Re(s) < k− 1, then

(c)
∑
t∈Q∗

Iabsδt
(f) <∞.

Proof. We need to estimate the expression
∫ ∞

0

∫ ∞

−∞

∣∣∣∣f∞(

(
yx 1 − tx
−y t

)∣∣∣∣ dx y
Re(s)−k/2−1dy.

By (10), the inner integral is

≪ yk/2
∫ ∞

−∞

dx

(y2x2 + y2 + t2 + (1 − tx)2 + 2y)k/2

= yk/2(t2 + y2)−k/2

∫ ∞

−∞

dx

(x2 − 2t
t2+y2x+ 1+t2+y2+2y

t2+y2 )k/2
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We will show that the integral is bounded, independently of y and t. Completing
the square, the integral is equal to
∫ ∞

−∞

dx

((x− t
t2+y2 )2 + (1+y)2+t2

t2+y2 − t2

(t2+y2)2 )k/2
=

∫ ∞

−∞

dx

(x2 + (1+2y+y2+t2)(t2+y2)−t2
(t2+y2)2 )k/2

=

∫ ∞

−∞

dx

(x2 + (t2+y2+y)2

(t2+y2)2 )k/2
<

∫ ∞

−∞

dx

(x2 + 1)k/2
<∞.

Therefore writing s = σ + iτ ,

Iabsδt
(f)∞ ≪

∫ ∞

0

yσ−1(t2 + y2)−k/2dy.

For convergence as y → 0, we need σ − 1 > −1, i.e. σ > 0. For convergence as
y → ∞, we need σ − 1 − k < −1, i.e. σ < k. This proves the absolute convergence
of Iδt(f) on the given strip.

In order to sum over t, we need to bound the above integral in terms of t. We
have

Iabsδt
(f)∞ ≪

∫ ∞

0

yσ−1|t|−k(1 +
y2

t2
)−k/2dy

= |t|−k

∫ ∞

0

(
y2

t2

)σ
2

|t|σ(1 +
y2

t2
)−k/2d∗y.

Letting u = (y/t)2 so d∗u = 2d∗y, the above is

=
1

2
|t|σ−k

∫ ∞

0

u
σ
2 −1

(1 + u)k/2
du,

which proves the second assertion since k > σ > 0. (As an aside, this last integral
equals B(σ2 ,

k−σ
2 ) where B(n,m) = Γ(n)Γ(m)/Γ(n+m) is the Beta function.)

As in the proof of Proposition 3.7, Iabsδt
(f)fin vanishes unless t = N

n
b for some

b ∈ Z− {0}. By (9), we see that

Iabsδt
(f)fin ≪ n

σ−k/2ψ(N)

N2σ−k

∑

d|b
d−2σ+k.

If σ > k/2, then d−2σ+k ≤ 1. If σ ≤ k/2, then d−2σ+k ≤ |b|−2σ+k. The number of
divisors of b is ≪ bε for any ε > 0. Since Iabsδt

(f)∞ contributes |b|σ−k, we have

(11)
∑

t∈Q∗

Iabsδt
(f) ≪

{∑
b∈Z−{0} |b|−σ+ε if σ ≤ k/2

∑
b∈Z−{0} |b|σ−k+ε if σ > k/2.

Hence
∑

t I
abs
δt

(f) <∞ as long as 1 < σ < k− 1. �

The following will complete the proof of Proposition 3.3.

Proposition 3.10. For δ = 1, Iabs1 (f) <∞ provided

0 < Re(s) < k− 1.

For δ =
(

1
−1

)
, Iabsδ (f) <∞ provided

1 < Re(s) < k.
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Proof. For any a > 0, a change of variables gives

(12)

∫ ∞

−∞

dx

(x2 + a2)k/2
= a−k+1

∫ ∞

−∞

du

(u2 + 1)k/2
.

We again write s = σ + iτ . When δ = 1, using (10) we have

Iabs1 (f) ≪
∫ ∞

0

∫ ∞

−∞

yσ−1

(x2 + y2 + 2y + 1)k/2
dx dy.

By (12), this is

≪
∫ ∞

0

yσ−1(y + 1)−k+1dy.

This converges precisely when 0 < σ < k− 1.
Similarly, for δ =

(
1

−1

)
,

Iabsδ (f) ≪
∫ ∞

0

∫ ∞

−∞

yσ−1

(x2y2 + y2 + 2y + 1)k/2
dx dy

=

∫ ∞

0

yσ−1−k

∫ ∞

−∞

dx

(x2 + (1 + 1
y )2)k/2

dy

≪
∫ ∞

0

yσ−k−1(1 + y−1)−k+1dy.

As y → 0, we need σ − k − 1 + k − 1 > −1, i.e. σ > 1. As y → ∞, we need
σ − k − 1 < −1, i.e. σ < k. This proves the proposition. �

3.4. Proof of Theorem 1.1. We have now proven that the geometric side con-
verges absolutely when 1 < Re(s) < k− 1, and therefore it is equal to the spectral
side on this strip. When we sum the contribution of Prop. 3.7 over all b 6= 0, we
set a = b/d so that b = ad. Then

∑

b6=0

bs−k

1f1(s; k;
2πirn
Nb )

∑

d|b
gcd(b/d,Nd)| gcd(r,n)

gcd(b/d,Nd)

d2s−kω′(b/d)
e−

2πirℓ0
b/d

=
∑

a6=0,d>0
gcd(a,Nd)| gcd(r,n)

as−kd−s gcd(a,Nd)

ω′(a)e2πirℓ0/a
1f1(s; k;

2πirn
Nad ).

The theorem now follows immediately upon equating the two sides of the trace
formula and dividing through by e−2πr

n
1−k/2.

4. Estimates and Examples

4.1. Asymptotic behavior. For two functions A,B, we write A ∼ B to mean that
A/B → 1 in a limiting sense which will be clear from the context. For example, by
Stirling’s approximation we have the following:

(13) Γ(z + b) ∼
√

2πe−zzz+b−1/2 (z → ∞, | arg z| < π)

([AS], 6.1.39). The ∼ notation here depends on b; i.e. given ε > 0 there is a
constant N(b) > 0 such that the quotient is within ε of 1 whenever |z| > N(b).

We now estimate each term of Theorem 1.1 as k → ∞. It will turn out that
the first two terms are dominant, provided their sum does not vanish. In order to
ensure nonvanishing of

∑
m| gcd(n,r)m

2s−k+1/ω′(m), we will assume for simplicity
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that gcd(n, r) = 1. However in general one can prove that this sum can only vanish
on the left edge of the critical strip, i.e. on the line Re(s) = k−1

2 .

Proposition 4.1. Let s = k/2 + α + iτ , with 1 < k/2 + α < k − 1. Assume
gcd(n, r) = 1. Then as k → ∞ the identity term in Theorem 1.1 satisfies

∣∣∣∣
ψ(N)2k−1Γ(s)(2πrn)k−s−1

(k − 2)!

∣∣∣∣ ∼
2
√
π ψ(N)(4πrn)k/2−α−1

k
k/2+α−1/2

(k− 2)! ek/2
(14)

∼
√

2ψ(N)eα+1

(
4πrne

k

)k/2−α−1

.

If N = 1, then as k → ∞ the second term in Theorem 1.1 satisfies
∣∣∣∣
2k−1Γ(k− s)(2πrn)s−1

(k − 2)! ik

∣∣∣∣ ∼
2
√
π(4πrn)k/2+α−1

k
k/2−α−1/2

(k− 2)! ek/2
(15)

∼
√

2e−α+1

(
4πrne

k

)k/2+α−1

.

Remark: The ∼ notation here depends on α+ iτ as discussed after (13).

Proof. Using (13), the lefthand side of (14) is

=
ψ(N)2k−1|Γ(k/2 + α+ iτ)|(2πrn)k/2−α−1

(k− 2)!

∼ ψ(N)2−12k(2πrn)k/2−α−1
√

2πe−k/2(k/2)k/2+α−1/2

(k− 2)!
.

For the second line of (14) we substitute (k − 2)! = Γ(k − 1) ∼
√

2πe−k
k
k−1−1/2.

The second estimate is similar, as the lefthand side of (15) is

∼ 2−12k(2πrn)k/2+α−1e−k/2(k/2)k/2−α−1/2

(k − 2)!
.

�

We now show that the third term in Theorem 1.1 decays much more rapidly in
comparison with the first terms as k → ∞. We can rewrite it as a sum over a, d > 0.
Note that ω′(−a) = (−1)kω′(a). Thus the third term is equal to

ψ(N)(4πrn)k−1

Ns(k− 2)! eiπs/2

∑

a,d>0
gcd(a,Nd)| gcd(r,n)

[
as−kd−s1f1(s; k;

2πirn
Nad )e−2πirℓ0/a(16)

+ eiπsas−kd−s1f1(s; k;− 2πirn
Nad )e2πirℓ0/a

] gcd(a,Nd)

ω′(a)
,

where ℓ0 is any integer satisfying ℓ0Nd ≡ n mod a. Write s = σ + iτ . If w is real,

|1f1(s; k; 2πiw)| =

∣∣∣∣

∫ 1

0

e2πiwtts−1(1 − t)k−s−1dt

∣∣∣∣

≤
∫ 1

0

tσ−1(1 − t)k−σ−1dt = B(σ, k − σ)(17)

for the Beta function B. Furthermore, |eiπs/2| = e−πτ/2. Thus the absolute value
of (16) is

≤ ψ(N)(4πrn)k−1 gcd(r, n)B(σ, k − σ)

Nσ(k− 2)!
eπτ/2

∑

a,d>0

a−(k−σ)d−σ
∣∣1 + eiπs

∣∣ .
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Note that |1 + eiπs| ≤ (1 + e−πτ ). Pulling this out of the sum, we obtain (eπτ/2 +
e−πτ/2) = 2 cosh(τπ/2), and we immediately arrive at the following.

Proposition 4.2. Write s = σ + iτ for 1 < σ < k− 1. Then the absolute value of
the last term (16) of Theorem 1.1 is

≤ ψ(N)(4πrn)k−1 gcd(r, n)B(σ, k − σ)

Nσ(k− 2)!
2 cosh(τπ/2)ζ(k − σ)ζ(σ)

for the Beta function B and the Riemann zeta function ζ.

We remark that when 1 < Re(s) < k − 1 as is the case here, the integrand in (17)
is smaller than 1 so 0 < B(σ, k − σ) < 1.

If we restrict s to the critical strip k−1
2 < Re(s) < k+1

2 , then both zeta values
approach 1 as k → ∞. Therefore we see that ifN > 1, the identity term is dominant
as k → ∞. If N = 1, then I1(f) is the main term when σ > k/2, while I( 0 1

−1 0

)(f)

is the main term when σ < k/2.
Corollary 1.3 now follows easily. In fact we can make it effective. Assume N > 1,

k > 3 and gcd(n, r) = 1. Let

F (s) =
ψ(N)2k−1Γ(s)(2πrn)k−s−1

(k − 2)!

denote the first term of the geometric side of Theorem 1.1, and let T (s) denote
the other term, given in (16). Clearly the average of L-values is nonzero whenever
|T (s)| < |F (s)|. By Prop. 4.2, this holds whenever

ψ(N)(4πrn)k−1B(σ, k − σ)

Nσ(k− 2)!
2 cosh(πτ/2)ζ(k − σ)ζ(σ)

<
ψ(N)2k−1|Γ(s)|(2πrn)k−σ−1

(k − 2)!
.

Using B(σ, k − σ) = Γ(σ)Γ(k − σ)/(k− 1)!, the above is equivalent to

(18) 2 cosh(τπ/2) <

(
N

2πrn

)σ
(k− 1)! |Γ(s)|

ζ(k − σ)ζ(σ)Γ(k − σ)Γ(σ)
.

Lemma 4.3. For any s = σ + iτ with σ > 1,

∣∣∣∣
Γ(s)

Γ(σ)

∣∣∣∣ ≥ e−τ arg(s−1/2)




σ − 1/2 − ln(2)

π
√

2πe

σ − 1/2 + ln(2)

π
√

2πe



 .

Proof. This follows immediately from the following approximation due to Spouge:

(19) Γ(s) =
√

2π(s− 1/2)s−1/2e−s+1/2[1 + ε(s)] (σ > 1),

where

|ε(s)| <
ln(2)

π
√

2πe

σ − 1/2

([Sp], Theorem 1.3.2). We apply this to Γ(s) and Γ(σ), and use
∣∣∣(s− 1/2)s−1/2

∣∣∣ = |s− 1/2|σ−1/2e−τ arg(s−1/2) ≥ (σ − 1/2)σ−1/2e−τ arg(s−1/2).

�
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By the lemma and (18), we see that the average of Theorem 1.1 is nonzero
whenever

(20) 2 cosh(τπ/2)eτ arg(s−1/2) <

(
N

2πrn

)σ
(k− 1)!

ζ(k − σ)ζ(σ)Γ(k − σ)




σ − 1/2 − ln(2)

π
√

2πe

σ − 1/2 + ln(2)

π
√

2πe



 .

We remark that since | arg(s− 1/2)| < π/2, the lefthand side is bounded above by
2 cosh(τπ/2)e|τ |π/2 = eπ|τ | + 1, which would simplify but weaken the inequality.

Since the lefthand side of (20) increases with |τ |, we obtain the following.

Proposition 4.4. Suppose N > 1, k > 3, and gcd(n, r) = 1. Fix τ0 > 0, and let
R denote the set of s = σ+ iτ with |τ | ≤ τ0 and k−1

2 ≤ σ ≤ k+1
2 . Then the average

in Theorem 1.1 is nonzero at every point of R if

(21) 2 cosh(τ0π/2)eτ0 tan−1(
τ0

k/2−1
) <

(
N

2πrn

) k±1
2 (k − 1)!

ζ( k−1
2 )2 Γ( k+1

2 )




k

2 − 1 − ln(2)

π
√

2πe

k

2 + ln(2)

π
√

2πe



 .

Here we choose k−1
2 if N > 2πrn, and k+1

2 otherwise.

Because the righthand side of (21) tends to ∞ as N + k → ∞, Corollary 1.3
follows immediately.

4.2. Zero-free regions. We can use Prop. 4.4 to find zero-free regions of certain
modular L-functions. The idea is to apply the proposition with n = r = 1 when
dimSk(N,ω

′) = 1, since the average then gives an actual L-value. The exponent of
N
2π in (21) is k+1

2 unless N ≥ 7.

Example 4.5. Let h denote the unique normalized cusp form in S10(2). When
n = r = 1, N = 2 and k = 10, the righthand side of (21) is 8.97346, and the
inequality holds for τ0 = 1.169259. Hence the value of Λ(s, h) is nonzero for all s
in the critical strip with | Im(s)| ≤ 1.169259.

Example 4.6. Let h denote the unique normalized cusp form in S8(3). Then
Λ(s, h) is nonzero for all s in the critical strip with | Im(s)| ≤ 1.119308.

Example 4.7. Let h denote the unique normalized cusp form in S6(5). Then the
value of Λ(s, h) is nonzero for all s in the critical strip with | Im(s)| ≤ 0.852608.

Example 4.8. According to Stein’s Modular Forms Database, there exists a Dirich-
let character χ mod 7 (unique up to Galois conjugacy) for which dimS5(7, χ) = 1.
If h is the normalized cusp form, then Λ(s, h) is nonzero for all s in the critical
strip with | Im(s)| ≤ 0.501352.

4.3. Approximation by partial sums. In order to estimate the geometric side,
we can truncate the last term (16). Let A,D be positive integers. Define the partial
sum

SA,D =
ψ(N)(4πrn)k−1

Ns(k − 2)! eiπs/2

∑

1≤a≤A,1≤d≤D
gcd(a,Nd)| gcd(r,n)

[
as−kd−s1f1(s; k;

2πirn
Nad )e−2πirℓ0/a

+ eiπsas−kd−s1f1(s; k;− 2πirn
Nad )e2πirℓ0/a

] gcd(a,Nd)

ω′(a)
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where as usual ℓ0Nd ≡ n mod a. The error is given by the tail of the series

∆A,D =
ψ(N)(4πrn)k−1

Ns(k− 2)! eiπs/2

∑

a,d>0
a>A or d>D

gcd(a,Nd)| gcd(r,n)

[
as−kd−s1f1(s; k;

2πirn
Nad )e−2πirℓ0/a

+ eiπsas−kd−s1f1(s; k;− 2πirn
Nad )e2πirℓ0/a

] gcd(a,Nd)

ω′(a)
.

As in the proof of Prop. 4.2, we have the following bound for the error:

|∆A,D| ≤
ψ(N)(4πrn)k−1 gcd(r, n)B(σ, k − σ)

Nσ(k− 2)!
2 cosh(πτ/2)

∑

a>A or d>D
gcd(a,Nd)| gcd(r,n)

a−(k−σ)d−σ.

We can estimate the error using the following easy lemma.

Lemma 4.9. For s = σ + iτ ,

∑

a>A or d>D
gcd(a,Nd)| gcd(r,n)

a−(k−σ)d−σ ≤ ζ(k − σ)ζ(σ) −
A∑

a=1

a−(k−σ)
D∑

d=1

d−σ.

4.4. Computing the τ-function. As a simple example, consider Ramanujan’s
∆(z) =

∑∞
n=1 τ(n)e2πinz ∈ S12(1). Writing

(22) τ(r) =
τ(r)Λ(6,∆)/‖∆‖2

τ(1)Λ(6,∆)/‖∆‖2
,

we can use the geometric side of Theorem 1.1 to compute the top and bottom.
Taking n = 1, let F (r) denote the sum of the first two terms of the formula for
τ(r)Λ(6,∆)

‖∆‖2 . We find that

F (r) =
212(2πr)55!

10!
.

Let SA(r) denote the Ath partial sum (taking A = D above) of the last term of the

formula. Then τ(r)Λ(6,∆)
‖∆‖2 ≈ F (r) + SA(r) with an error of

(23) ≤ 2(4πr)11B(6, 6)

10!



ζ(6)2 −
(

A∑

a=1

1

a6

)2




by Lemma 4.9.
As an illustration, we will compute τ(2). To estimate the denominator of (22),

take r = 1 and A = 1. This gives

Λ(6,∆)

‖∆‖2
≈ 212(2π)55!

10!
− (4π)11

10!

[
1f1(6; 12; 2πi) + 1f1(6; 12;−2πi)

]
= 1492.55

with an error of ≤ 8.584. So the exact value is in the interval [1483, 1502].
For r = 2 we need to use A = 3 to get a reasonable approximation. We get

τ(2)Λ(6,∆)

‖∆‖2
≈212(4π)55!

10!
− (8π)11

10!

∑

a,d∈{1,2,3}
gcd(a,d)=1

(ad)−6

[
1f1(6; 12; 4πi

ad )e−2πirℓ0/a

+ 1f1(6; 12;− 4πi
ad )e2πirℓ0/a

]

= −35769.72.
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By (23) the error here is

≤ 2(8π)11B(6, 6)

(10)!

(
ζ(6)2 − (1 +

1

26
+

1

36
)2
)

= 354.008.

Thus the exact value is in the interval [−36124,−35415].
Taking the quotient of the estimates, we find that

−36124

1483
≤ τ(2) ≤ −35415

1502
,

i.e.
−24.359 ≤ τ(2) ≤ −23.578.

Because τ(2) is an integer, it must equal −24.
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[Ser] J.-P. Serre, Répartition asymptotique des valeurs propres de l’opérateur de Hecke Tp, J.
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