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1 Introduction

The Petersson trace formula relates spectral data coming from cusp forms to
Kloosterman sums and Bessel functions. It was discovered in 1932 [Pe] long
before Selberg’s trace formula and can be regarded as the first type of trace
formula for automorphic forms. It has proven to be an indispensable tool for es-
timating the size of the Fourier coefficients of modular forms in many situations.
See for example [Se], [IK], and Section 5 of [Iw].

In this paper we will use the relative trace formula to prove a variant of the
Petersson trace formula. The resulting generalized formula relates Hecke eigen-
values, Fourier coefficients and Petersson norms of cusp forms (on the spectral
side) to Bessel functions and Kloosterman sums (on the geometric side). To
state this result, let Sk(N,ω

′) be the space of cusp forms of level N , weight
k > 2, and nebentypus ω′ (see Section 3). For an integer n which is prime to N ,
let F be an orthogonal basis consisting of eigenfunctions for the Hecke operator
Tn. Then (see Theorem 3.9)

ψ(N)−1(k− 2)!

(4π
√
nm1m2)k−1

∑

h∈F

λn(h)am1(h)am2(h)

‖h‖2

= T (m1,m2, n)ω
′(
√
m1n/m2)

−1

+
2π

ik

∑

c>0,
N |c

1

c
Sω′(m2,m1; n; c)Jk−1(

4π
√
nm1m2

c
),

where am(h) is the mth Fourier coefficient of h, λn(h) is the eigenvalue of Tn
relative to h, Jk−1 is a Bessel function, Sω′(m2,m1; n; c) is a generalized Kloost-
erman sum defined in (12), ψ(N) = [SL2(Z) : Γ0(N)], the Petersson norm ‖h‖
is normalized in (3) below, and T (a1, a2, a3) ∈ {0, 1} is nonzero if and only if
aiaj/ak is a perfect square for all distinct i, j, k ∈ {1, 2, 3}.

In the special case n = 1, we recover the classical Petersson trace formula
(see Corollary 3.12 in the last section). The chief difference is that the above



formula includes Hecke eigenvalues, whereas the classical version involves only
the Fourier coefficients. Of course for GL2(Q), the two concepts are essentially
the same. In the last section, we will briefly explain how the generalized formula
can also be derived from the classical formula.

The modern theory of modular forms uses the viewpoint of representation
theory. In this context, much has been done by the experts to develop various
kinds of trace formulas for studying the spectral data attached to automorphic
forms. Two noteworthy examples are Arthur’s generalization of the Selberg
trace formula to higher rank groups (cf. [Ar] and its references), and Jacquet’s
relative trace formulas obtained by integrating kernel functions over different
subsets (refer to [Ja] and the bibliography of Lecture VIII in [Ge2]). These tools
are very well-suited for determining the nature of the functorial connections
between the cuspidal representations of two different groups. However such
abstract works can seem far removed from the realm of classical modular forms.
The present proof of the Petersson trace formula illustrates a method which
takes such work into an explicit form which is useful analytically in the classical
sense.

This approach suggests itself for generalization to other groups, where:

• a reproduction of the classical argument (via Poincaré series) would be
much more complicated

• the relationship between Hecke eigenvalues and Fourier coefficients is not
as transparent as it is for GL2(Q).

We hope to pursue this idea in future work.

2 General setting

Let F be a number field, with adele ring A. Let G be a reductive group over
F . Let H be an abelian subgroup of G × G. We assume that H(F )\H(A) is
compact. Define a right action of H on G by g(x, y) = x−1gy. For g ∈ G, let
Hg be the stabilizer of g, i.e.

Hg = {(x, y) ∈ H |x−1gy = g}.

For δ ∈ G(F ), let [δ] be the H(F )-orbit of δ in G(F ), i.e.

[δ] = {x−1δy| (x, y) ∈ H(F )}.

Each element of [δ] can be expressed uniquely in the form u−1δv for some
(u, v) ∈ Hδ(F )\H(F ).

Let f be a continuous function on G(A), and let

K(x, y) =
∑

γ∈G(F )

f(x−1γy) (x, y ∈ G(A)) (1)

be the associated kernel function. We assume that the above sum is uniformly
absolutely convergent on compact subsets of H(A). In particular, K(x, y) is a
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continuous function on the compact set H(F )\H(A). Let χ(x, y) be a character
of H(A), invariant under H(F ). Consider the expression

∫

H(F )\H(A)

K(x, y)χ(x, y)d(x, y), (2)

where d(x, y) is an H(A)-invariant measure. A relative trace formula results
from computing this integral using spectral and geometric expressions forK(x, y).

Using the geometric expression (1), the integral (2) can be rewritten as

∫

H(F )\H(A)

∑

γ∈G(F )

f(x−1γy)χ(x, y)d(x, y)

=

∫

H(F )\H(A)

∑

[δ]

∑

γ∈[δ]

f(x−1γy)χ(x, y)d(x, y)

=

∫

H(F )\H(A)

∑

[δ]

∑

(u,v)∈Hδ(F )\H(F )

f(x−1u−1δvy)χ(x, y)d(x, y)

=
∑

[δ]

∫

Hδ(F )\H(A)

f(x−1δy)χ(x, y)d(x, y).

The last step follows because χ is H(F )-invariant.
Let

Iδ(f) =

∫

Hδ(F )\H(A)

f(x−1δy)χ(x, y)d(x, y)

so that (2) is equal to
∑

[δ]

Iδ. An orbit [δ] is relevant if χ is trivial on Hδ(A).

Proposition 2.1 If [δ] is not relevant, then Iδ = 0.

Proof. If [δ] is not relevant, there exists (u, v) ∈ Hδ(A) such that χ(u, v) 6= 1.
Because H is abelian and the measure is H(A)-invariant, we have

Iδ(f) =

∫

Hδ(F )\H(A)

f(x−1u−1δvy)χ(ux, vy)d(ux, vy)

= χ(u, v)

∫

Hδ(F )\H(A)

f(x−1δy)χ(x, y)d(x, y) = χ(u, v)Iδ(f).

It follows that Iδ(f) = 0. �
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3 The Petersson trace formula

3.1 Background and notation

In this section we recall various facts and notation from [KL]. Let A denote the
adeles of Q, let G = GL(2), and let Z be the center of G. We write G for G/Z.
Fix a weight k and a level N , and let ω′ be a Dirichlet character with conductor
dividing N . For γ ∈ Γ0(N), define

ω′(γ) = ω′(d), γ =

(
a b
c d

)
.

Let Sk(N,ω
′) be the space of cusp forms on Γ0(N) satisfying

h(γz) = ω′(γ)−1j(γ, z)kh(z)

for all γ ∈ Γ0(N). To allow for the possibility of nonzero cusp forms, we assume

ω′(−1) = (−1)k.

We normalize the Petersson inner product by taking

‖h‖2 =
1

ψ(N)

∫∫

Γ0(N)\H
|h(z)|2yk dx dy

y2
, (3)

where ψ(N) = [SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + 1
p ).

Using the decomposition A∗ = Q∗(R∗
+×Ẑ∗), we associate a Hecke character

ω to ω′:

ω : A∗ - Ẑ∗ - (Z/NZ)∗
ω′

- C∗.

For an idele x, let xN denote the idele which agrees with x at the places p|N ,
and which is 1 at all other places. Then for any integer d prime to N ,

ω(dN ) = ω′(d). (4)

It is also straightforward to check that for x ∈ R

ω∞(x) = sgn(x)k. (5)

Let L2(ω) be the Hilbert space of functions on G(Q)\G(A) with central
character ω, which are square integrable over G(Q)\G(A). The inner product
depends on a choice of Haar measure, which we normalize so that the measure
of G(Q)\G(A) is π

3 (see [KL] for details). Let L2
0(ω) be the subspace of cuspidal

functions. Let R denote the right regular representation of G(A) on L2(ω).
Define

K0(N) = {
(
a b
c d

)
∈ GL2(Ẑ)| c ∈ N Ẑ}.
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Then by strong approximation, G(A) = G(Q)(G(R)+ × K0(N)). With the
Petersson inner product normalized as above, there is an isometric embedding
Sk(N,ω

′) ↪→ L2
0(ω) given by

h 7→ ϕh, ϕh(γ(g∞ × k)) = ω(k)j(g∞, i)
−kh(g∞(i)),

for γ ∈ G(Q), g∞ ∈ G(R)+, and k ∈ K0(N). Here ω(k) = ω(dN ) if k =(
a b
c d

)
∈ K0(N).

Fix an integer n > 0, prime to N . In [KL] we defined an operator R(f) on
L2(ω) which factors through the orthogonal projection to Sk(N,ω) and acts like
the Hecke operator Tn on Sk(N,ω). The function f = f∞ × ffin is constructed
as follows. Let

M(n, N) = {g =

(
a b
c d

)
∈M2(Ẑ)| det g ∈ nẐ∗ and c ≡ 0 mod N Ẑ}.

Then ffin = f n : G(Afin) → C is the Hecke operator supported on Z(Afin)M(n, N)
defined by

f n(zm) =
ψ(N)

ω(z)ω(m)
,

where ω(m) = ω(dN ) for m =

(
a b
c d

)
∈M(n, N), and ω(z) = ω(1∞ × zfin) for

z =

(
zfin

zfin

)
∈ Z(Afin). The following is easily established (cf. [KL]):

Lemma 3.1 Suppose g ∈ G(Afin), and det g ∈ nẐ∗. Then f n(g) 6= 0 if and

only if g ∈M(n, N).

Let πk denote the weight k discrete series representation of G(R), and let
v0 be a lowest weight unit vector in the space of πk. For g ∈ G(R), let fk(g) =
〈πk(g)v0, v0〉 be the matrix coefficient attached to v0. Define

f∞ = dkfk,

where dk is the formal degree of πk. Explicitly, if g =

(
a b
c d

)
, then

f∞(g) =






(k− 1)

4π

det(g)k/2(2i)k

(−b+ c+ (a+ d)i)k
if det(g) > 0

0 otherwise

(6)

(see [KL]).
Let f = f∞f n. Define an operator R(f) on L2(ω) by

R(f)φ(x) =

∫

G(A)

f(g)φ(xg)dg.
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Then as shown in [KL], when k > 2 we have the following commutative diagram:

L2(ω)
n

k

2−1R(f)- L2(ω)

Sk(N,ω
′)

orthog. proj.

? Tn - Sk(N,ω
′)

6

The kernel of the operator R(f) is given by

K(x, y) =
∑

γ∈G(Q)

f(x−1γy).

This is the geometric expansion of K(x, y). As shown in [KL], we also have a
spectral expansion

K(x, y) =
∑

h∈F

R(f)ϕh(x)ϕh(y)

‖ϕh‖2
,

where F is any orthogonal basis for Sk(N,ω
′). Suppose F consists of eigenvec-

tors for the Hecke operator Tn. The existence of such a basis is guaranteed by
the fact that ω′(n)1/2Tn is self-adjoint relative to the Petersson inner product.
In this case, R(f)ϕh(x) = n

1− k

2λn(h)ϕh(x), so

K(x, y) = n
1− k

2

∑

h∈F

λn(h)ϕh(x)ϕh(y)

‖h‖2
. (7)

3.2 The spectral side

Define a unitary character θ : A −→ C∗ by

θ∞(x) = e−2πix, x ∈ R,

and
θp(x) = e2πir(x), x ∈ Qp,

where r(x) ∈ Q is the principal part of x, a number with p-power denominator
characterized (up to Zp) by x ∈ r(x) + Zp. Then θ is trivial on Q and θfin =∏
p θp is trivial precisely on Ẑ. In particular, for any q ∈ Q, θfin(q) = θ∞(q)−1 =

e2πiq.

Let N = {
(

1 ∗
1

)
} be the unipotent subgroup of G. The Petersson trace

formula will result from applying the technique in Section 2 to the above ker-
nel function, taking H(A) = N(A) × N(A). We use the usual Lebesgue
measure on R, and normalize Haar measure on A so that meas(Q\A) =

meas(N(Q)\N(A)) = 1. In particular, this implies meas(Ẑ) = 1.
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We need to fix a character on N(Q)\N(A) × N(Q)\N(A). This amounts
to choosing two characters on Q\A. Recall that every character on Q\A is of
the form

θm(x) = θ(−mx)
for some m ∈ Q. This identifies a character on N(Q)\N(A) in the obvious way.
For two rational numbers m1,m2, we shall compute the integral

∫

N(Q)\N(A)

∫

N(Q)\N(A)

K(n1, n2)θm1(n1)θm2(n2)dn1 dn2. (8)

We begin with the spectral side, where one immediately sees the motivation for
integrating this kernel over H(Q)\H(A). Using the spectral expansion of the
kernel (7), this is

= n
1− k

2

∑

h∈F

λn(h)

‖h‖2

∫

N(Q)\N(A)

ϕh(n1)θm1(n1)dn1

∫

N(Q)\N(A)

ϕh(n2)θm2(n2)dn2.

These integrals can be computed using the following proposition.

Proposition 3.2 Let h ∈ Sk(N,ω
′), with Fourier expansion h(z) =

∑
n>0 anq

n,

where q = e2πiz. Let ϕh be the associated function on G(A). Then for m ∈ Q,
∫

Q\A
ϕh(

(
1 t

1

)
)θ(mt)dt =

{
e−2πmam if m ∈ Z+

0 otherwise.

Proof. The N = 1 case is given in [Ge1], p. 46. For the general case, see [KL]. �

In light of this, (8) is nonzero only if m1,m2 ∈ Z+. Under this assumption,
(8) is

= n
1− k

2 e−2π(m1+m2)
∑

h∈F

λn(h)am1(h)am2(h)

‖h‖2
. (9)

3.3 The geometric side

Here we use the procedure in Section 2 to compute (8) using the geometric
expansion of the kernel. The setting in Section 2 is slightly different from our
present situation, since we are using a central character and integrating over G.
However, the same method goes through with the obvious minor adjustments.

The geometric side is a sum
∑

[δ] Iδ, where

Iδ = Iδ(f) =

∫

Hδ(Q)\H(A)

f(n−1
1 δn2)θm1(n1)θm2(n2)dn1dn2

for H(A) = N(A) × N(A). As shown above, in order for the spectral side to
be nonzero, we must have m1,m2 ∈ Z+. We can also see this directly on the
geometric side. Observe that

f n(g) = f n(g

(
1 t
0 1

)
) = f n(

(
1 t
0 1

)
g),
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for any t ∈ Ẑ and g ∈ G(Afin). Thus

Iδ(f) =

∫

Hδ(Q)\H(A)

f(n−1
1 δn2

(
1 t

1

)
)θm1(n1)θm2(n2)dn1dn2.

Replacing n2 by n2

(
1 −t

1

)
, we then have

Iδ(f) = θfin(m2t)Iδ(f).

It follows that Iδ(f) 6= 0 only if m2Ẑ ⊂ Ẑ, i.e. only if m2 ∈ Z. Similarly m1 ∈ Z.
We will see below that in fact m1,m2 must be positive as well.

The orbits [δ] are in one-to-one correspondence with the double cosets

N(Q)\G(Q)/N(Q).

Let M be the group of invertible diagonal matrices. The Bruhat decomposition
is the following disjoint union:

G(Q) = N(Q)M(Q) ∪N(Q)M(Q)

(
0 1
1 0

)
N(Q).

Thus

N(Q)\G(Q)/N(Q) = { [

(
γ 0
0 1

)
]

∣∣∣∣ γ ∈ Q∗}
⋃

{ [

(
0 µ
1 0

)
]

∣∣∣∣ µ ∈ Q∗}.

We need to determine which of these orbits are relevant.

First let δ =

(
γ 0
0 1

)
. If (

(
1 t1

1

)
,

(
1 t2

1

)
) ∈ Hδ(A), then

(
1 −t1

1

) (
γ 0
0 1

) (
1 t2

1

)
= z

(
γ 0
0 1

)
,

for some z ∈ Z(Q). A simple calculation shows that z = 1 and t1 = γt2, so

Hδ(A) =

{(
1 γt
0 1

)
×

(
1 t
0 1

)
| t ∈ A

}
.

Thus δ is relevant if and only if

θ((m1γ −m2)t) = 1

for all t ∈ A, or equivalently, if and only if m1γ = m2.

On the other hand, if δ =

(
0 µ
1 0

)
∈ G(Q), one sees easily that

Hδ(A) = {(e, e)}

where e is the identity matrix, so all of these δ’s are relevant.
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3.3.1 Computation of the first type of Iδ

Here we take m1,m2 ∈ Z, and δ =

(
γ

1

)
where m1γ = m2. Note that if

m1 = 0 or m2 = 0, then they are both zero since γ 6= 0. Now

Iδ(f) =

∫

{(γt,t)∈Q2}\A×A

f(

(
1 −t1

1

) (
γ 0
0 1

)(
1 t2

1

)
)θ(m1t1 −m2t2)dt1dt2

=

∫

{(γt,t)∈Q2}\A×A

f(

(
γ γt2 − t1
0 1

)
)θ(m1t1 −m2t2)dt1dt2.

Let t′1 = γt2 − t1 and t′2 = t2. Then because m1γ = m2, m1t1 −m2t2 = −m1t
′
1,

so

Iδ =

∫

0×Q\(A×A)

f(

(
γ t′1
0 1

)
)θ(−m1t

′
1)dt

′
1dt

′
2

= meas(Q\A)

∫

A

f(

(
γ t
0 1

)
)θ(−m1t)dt.

If m1 = m2 = 0, then

Iδ =

∫

A

f(

(
1 t

1

) (
γ

1

)
)dt = 0.

This follows by a direct computation of the archimedean factor of Iδ using a
contour integral in the spirit of Proposition 3.4 below. Full details are given in
[KL].

We may therefore assume that m1,m2 are both nonzero integers. Then
γ = m2/m1, and

Iδ =

∫

A

f(

(m2

m1
t

0 1

)
)θ(−m1t)dt =

∫

A

f(

(
m2 m1t

m1

)
)θ(−m1t)dt

=

∫

A

f

(
m2 t
0 m1

)
θ(−t)dt.

Here we used the fact that f(zg) = f(g) for z ∈ Z(Q).
We factorize the above integral into (Iδ)∞(Iδ)fin. First we compute

(Iδ)fin =

∫

Afin

f n
(
m2 t

m1

)
θfin(−t)dt.

Suppose

(
m2 t
0 m1

)
∈ Supp f n = Z(Afin)M(n, N). Then taking determinants

we see that m1m2 ∈ nQ∗2
p Z∗

p for all p. Thus ordp(
m1m2

n
) is even for all p. As

a result, m1m2 = ±ns2 for some s ∈ Q∗. Here we can take s > 0. Under
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this condition, Lemma 3.1 shows that

(
m2 t
0 m1

)
∈ Supp f n if and only if

(
m2

s
t
s

0 m1

s

)
∈M2(Ẑ), i.e. m1

s ,
m2

s ∈ Z and t ∈ sẐ. Assuming this, we have

(Iδ)fin = ω(1∞ × sfin)
−1

∫

sbZ

f n
(
m2

s
t
s

0 m1

s

)
θfin(−t)dt.

Note that in fact ω(1∞ × sfin) = ω(s)ω∞(s)−1 = 1 since s > 0 (cf. (5)). Hence
the above is

= ψ(N)ω((m1/s)N)−1

∫

sbZ

θfin(−t)dt.

This is nonzero only if sẐ ⊂ Ẑ, i.e. only if s ∈ Z. This being the case, the
integral is equal to meas(sẐ) = |s|Afin

= 1
s . In addition, m1/s is relatively

prime to N since it is a factor of n. Thus by (4), ω((m1/s)N) = ω′(m1/s), and

(Iδ)fin =
1

s
ψ(N)ω′(m1/s)

−1.

This proves the following.

Proposition 3.3 Let m1,m2 ∈ Z, and let δ =

(
γ 0
0 1

)
∈ G(Q). Then (Iδ)fin

is nonzero if and only if

1. m1,m2 6= 0 and γ = m2/m1

2. m1m2 = ±s2n for some positive integer s| gcd(m1,m2).

If these conditions are satisfied, then

(Iδ)fin =
1

s
ψ(N)ω′(m1/s)

−1.

For the infinite part, we have the following (recall k > 2).

Proposition 3.4 Let δ =

(m2

m1
0

0 1

)
∈ G(Q). Then (Iδ)∞ is nonzero if and

only if m1,m2 > 0. Under this assumption,

(Iδ)∞ =

∫

R

f∞

(
m2 t
0 m1

)
θ∞(−t)dt =

(4π)k−1

(k− 2)!
(m1m2)

k/2e−2π(m1+m2).

Proof. Because f∞ is supported on G(R)+, the integrand is zero unless m1 and
m2 have the same sign. Now by the formula (6) for f∞, we have

∫

R

f∞

(
m2 t
0 m1

)
θ∞(−t)dt

=
k− 1

4π
(m1m2)

k/2(2i)k
∫

R

e2πit

(−t+ (m1 +m2)i)k
dt
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=
k− 1

4π
(m1m2)

k/2

(
2

i

)
k ∫ ∞

−∞

e2πit

(t− (m1 +m2)i)k
dt.

The integrand has a pole at (m1 + m2)i. Use a contour integral around a
semicircle in the upper half-plane. If m1,m2 < 0, then there are no poles inside
the contour, so the integral vanishes. If m1,m2 > 0, then the residue theorem
gives

(Iδ)∞ =
k − 1

4π

(m1m2)
k/22k

ik
2πi

(k − 1)!

dk−1

dtk−1
e2πit

∣∣∣∣
t=(m1+m2)i

=
k− 1

4π

(m1m2)
k/22k

ik
2πi

(k− 1)!
(2πi)k−1e−2π(m1+m2)

=
(4π)k−1

(k − 2)!
(m1m2)

k/2e−2π(m1+m2).

�

Multiplying (Iδ)fin and (Iδ)∞, we have the following.

Proposition 3.5 If δ =

(
γ 0
0 1

)
∈ G(Q), then Iδ(f) is nonzero if and only if:

1. m1,m2 ∈ Z+ and γ = m2/m1

2. m1m2 = s2n for some positive integer s| gcd(m1,m2).

Under these conditions,

Iδ(f) =
ψ(N)(4π

√
m1m2)

k−1
√
n

(k− 2)! e2π(m1+m2)ω′(m1/s)
.

3.3.2 Computation of the second type of Iδ

If δ =

(
0 µ
1 0

)
, then Hδ = {(e, e)}, and

Iδ(f) =

∫

N(A)×N(A)

f(n−1
1

(
0 µ
1 0

)
n2)θm1(n1)θm2(n2)dn1dn2.

Once again we split the computation into the finite and infinite components.

Let ni =

(
1 ti
0 1

)
, i = 1, 2. Then

n−1
1

(
0 µ
1 0

)
n2 =

(
−t1 µ− t1t2
1 t2

)
. (10)

11



Proposition 3.6 For k > 2,

(Iδ)∞ =

∫∫

R×R

f∞(

(
−t1 µ− t1t2
1 t2

)
)θ∞(m1t1 −m2t2)dt1dt2 (11)

is non-zero only if m1,m2,−µ are all positive. Under these conditions,

(Iδ)∞ =
e−2π(m1+m2)(4πi)k

√
m1m2

k−1

2 · (k− 2)!
(−µ)

1
2Jk−1

(
4π

√−µm1m2

)
,

where Jk is the Bessel J-function.

Proof. When µ > 0, det(n−1
1

(
µ

1

)
n2) = −µ < 0, so f∞ vanishes. Thus we

can assume µ < 0. Using the formula for f∞, we have

(Iδ)∞ =
k− 1

4π

∫ ∞

−∞

∫ ∞

−∞

(2i)k(−µ)k/2e2πi(m2t2−m1t1)

(t2(t1 + i) − µ− i(t1 + i))k
dt1dt2

=
k− 1

4π
(2i)k(−µ)k/2

∫ ∞

−∞

∫ ∞

−∞

e2πi(m2t2−m1t1)

(t1 + i)k(t2 − (i+ µ
t1+i

))k
dt2dt1.

Note that i+ µ
t1+i

is in the upper half-plane. Take the integral over t2 along a
semicircular contour. If m2 ≤ 0, we can take a semicircle in the lower half-plane,
and the integral vanishes. If m2 > 0, we can use an upper half-plane contour,
and by the residue theorem we have

k− 1

4π
(2i)k(−µ)k/2(2πi)

(2πim2)
k−1

(k − 1)!

∫ ∞

−∞

e2πi(m2(i+
µ

t1+i
)−m1t1)

(t1 + i)k
dt1

=
(−1)k(4πm2)

k−1(−µ)k/2

(k − 2)!
e−2π(m1+m2)

∫ ∞

−∞

e2πi(m2
µ

t1+i
−m1(t1+i))

(t1 + i)k
dt1.

If m1 ≤ 0, we can integrate over a contour along the real axis and a semicircle
in the upper halfplane, and the integral vanishes.

For m1 > 0, we can evaluate the above integral in terms of a Bessel function.
The Bessel functions Jn may be defined using the generating function

e
1
2 ξ(τ− 1

τ
) =

∞∑

−∞
τnJn(ξ),

see [Wa] Chapter 2.1. Similarly, for any positively oriented simple closed curve
C about the origin,

Jn−1(ξ) =
1

2πi

∫

C

e
1
2 ξ(τ− 1

τ
)

τn
dτ.

To use this in our situation, solve

1

2
ξτ = −2πim1(t1 + i), −1

2

ξ

τ
= 2πim2

µ

t1 + i
.

12



We can take

ξ = 4π
√−µm1m2, τ =

−im1√−µm1m2
(t1 + i).

Thus if C is a clockwise semi-circular contour along the real axis and enclosing
−i in the lower half-plane,

Jk−1(4π
√−µm1m2) = − 1

2πi

∫

C

e
1
2 ξ(τ− 1

τ
)

τk
dτ

= − 1

2πi

∫

C

e2πi(m2
µ

t1+i
−m1(t1+i))

( −im1√−µm1m2
)k(t1 + i)k

( −im1√−µm1m2

)
dt1.

As the radius of C goes to ∞, the contribution from the arc goes to 0. Therefore

∫ ∞

−∞

e2πi(m2
µ

t1+i
−m1(t1+i))

(t1 + i)k
dt1 = (−2πi)

( −im1√−µm1m2

)k−1

Jk−1(4π
√−µm1m2),

so we now see that

(Iδ)∞ =
(−1)k(4π)k−1(−µ)k/2mk−1

2

(k− 2)!
e−2π(m1+m2)(−2πi)

×
( −im1√−µm1m2

)
k−1

Jk−1(4π
√−µm1m2)

=
(4πi)k(−µ)1/2(m1m2)

k−1
2

2 · (k − 2)!
e−2π(m1+m2)Jk−1(4π

√−µm1m2).

�

For a modulus c ∈ NZ, the classical Kloosterman sum with character ω′ is
defined by

Sω′(n,m; c) =
∑

d∈(Z/cZ)∗

ω′(d)−1e(
nd+md

c
),

where dd ≡ 1 mod c and e(x) = e2πix. We generalize this to the following sum
for any integer a with gcd(a,N) = 1:

Sω′(n,m; a; c) =
∑

d1,d2∈Z/cZ,
d1d2=a

ω′(d1)
−1e(

nd1 +md2

c
). (12)

Here the summands are no longer necessarily invertible in Z/cZ, however they
are invertible modulo N . Note that if gcd(a, c) = 1, then d2 = ad1, so in this
special case one has

Sω′(n,m; a; c) = Sω′(n,ma; c).

13



Proposition 3.7 Assume µ < 0, m1,m2 ∈ Z, and δ =

(
µ

1

)
. Then

(Iδ)fin =

∫∫

Afin×Afin

f n(

(
1 −t1

1

)
δ

(
1 t2

1

)
)θfin(m1t1 −m2t2)dt1dt2

is nonzero only if µ = − n

c2 for some positive integer c ∈ NZ. Under this

condition,

(Iδ)fin = (−1)kψ(N)Sω′(m2,m1; n; c)

Proof. Suppose
(

1 −t1
1

)
δ

(
1 t2

1

)
=

(
−t1 µ− t1t2
1 t2

)
∈ Z(Afin)M(n, N) = Supp f n.

Then arguing as before, we have µ = −ns2 for some s ∈ Q+. Under this
condition,

(
−t1 µ− t1t2
1 t2

)
∈ Supp ffin ⇐⇒

(
− t1

s
µ−t1t2

s
1
s

t2
s

)
∈M(n, N)

by Lemma 3.1. Let c = 1
s , and let t′1 = ct1, t

′
2 = ct2. The above condition

translates to (
−t′1

−n−t′1t′2
c

c t′2

)
∈M(n, N),

which means:

1. c ∈ NZ

2. t′1, t
′
2 ∈ Ẑ

3. t′1t
′
2 ≡ −n mod cẐ.

Note dt′i = |c|Afin
dti = 1

cdti. Henceforth we will work with t′i, so we drop the ′

from the notation. We have

(Iδ)fin = c2
∫

bZ

∫

bZ

f n(

(
c

c

)−1 (
−t1 −n−t1t2

c
c t2

)
)θfin(

m1t1 −m2t2
c

)dt1dt2.

As before, because c > 0, f n(

(
c

c

)−1

g) = f n(g). Hence the value of f n in the

integrand is ψ(N)
ω((t2)N ) , which depends only on the residue class of t2 modulo N Ẑ.

Now because θfin is trivial on Ẑ, the value θfin(
m1t1−m2t2

c ) depends only on the

cosets t1 + cẐ and t2 + cẐ. This means that the entire integrand is constant
on cosets of cẐ. Let si ∈ Z+ ∩ (ti + cẐ). Note that gcd(s2, N) = 1 since
s1s2 ≡ −n mod N , and consequently ω((t2)N ) = ω((s2)N ) = ω′(s2). Therefore

(Iδ)fin = ψ(N)c2
∑

s1,s2∈Z/cZ,
s1s2=−n

meas(cẐ)2ω′(s2)
−1e(

m1s1 −m2s2
c

)
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= ψ(N)
∑

s1,s2∈Z/cZ,
s1s2=−n

ω′(s2)
−1e(

m1s1 −m2s2
c

).

Replacing s2 by −s2, this is

= ω′(−1)−1ψ(N)
∑

s1,s2∈Z/cZ,
s1s2=n

ω′(s2)
−1e(

m1s1 +m2s2
c

)

= (−1)kψ(N)Sω′(m2,m1; n; c).

�

For the global integral, we now see the following.

Proposition 3.8 Let δ =

(
µ

1

)
∈ G(Q). Then Iδ is nonzero only if

1. µ = − n

c2 for some positive c ∈ NZ

2. m1,m2 ∈ Z+.

If these conditions hold, then

Iδ = ψ(N)Sω′(m2,m1; n; c)

√
n(−4πi)k

√
m1m2

k−1

2c · (k− 2)!e2π(m1+m2)
Jk−1(

4π
√
nm1m2

c
).

3.4 Final results

Equating the geometric and spectral computations of the previous sections, we

obtain the following upon multiplying both sides by
(k− 2)!e2π(m1+m2)

ψ(N)
√
n(4π

√
m1m2)k−1

.

Theorem 3.9 Let k > 2, and let n,m1,m2 ∈ Z+, with gcd(n, N) = 1. Let F
be an orthogonal basis for Sk(N,ω

′) consisting of eigenfunctions for Tn. Then

ψ(N)−1(k− 2)!

(4π
√
nm1m2)k−1

∑

h∈F

λn(h)am1(h)am2(h)

‖h‖2

= T (m1,m2, n)ω
′(
√
m1n/m2)

−1

+
2π

ik

∑

c∈NZ+

1

c
Sω′(m2,m1; n; c)Jk−1(

4π
√
nm1m2

c
),

where

T (m1,m2, n) =






1 if m1m2 = s2n for some integer s| gcd(m1,m2)

0 otherwise.
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We remark that T (a1, a2, a3) = 1 if and only if aiaj/ak is a perfect square
integer for all distinct i, j, k ∈ {1, 2, 3}.

By choosing an appropriate basis F , the Hecke eigenvalues in the above
formula can be replaced by Fourier coefficients, as we now explain.

Lemma 3.10 There exists an orthogonal basis F consisting of eigenfunctions

of Tn, each of which has a1 6= 0.

Proof. We will see that in fact F can be taken to consist of Hecke eigenforms.
We say that two Hecke eigenforms are equivalent if they have the same Hecke
eigenvalues for every Tn, (n, N) = 1. Let R denote the set of equivalence classes
of eigenforms in Sk(N,ω

′). For r ∈ R let Vr denote the subspace spanned by
the eigenforms in r. Then

Sk(N,ω
′) =

⊕

r∈R
Vr

is an orthogonal direct sum. Thus it suffices to show that each Vr has an
orthogonal basis of forms with a1 6= 0 for each basis element.

As explained in [Ri] Theorem 1.2, there exists a new form f1 ∈ Vr. It
is well-known that any new form has a1 6= 0 (see for example, [AL] Lemma
19). Normalize f1 so that ‖f1‖ = 1, and extend {f1} to an orthonormal basis
{f1, f2, . . . , fs} for Vr. Suppose a1(f2) = 0. Let f ′

1 = f1+f2
‖f1+f2‖ , f ′

2 = −f1+f2
‖−f1+f2‖ ,

and f ′
i = fi for i ≥ 3. Then {f ′

1, . . . , f
′
s} is still an orthonormal basis for Vr,

and a1(f
′
1) = a1(f1)

‖f1+f2‖ 6= 0, a1(f
′
2) = −a1(f)

‖−f1+f2‖ 6= 0. Repeating this process if

necessary, we can assume a1(fi) 6= 0 for all i. �

Corollary 3.11 Suppose F consists of eigenfunctions of Tn with a1 = 1. Then

ψ(N)−1(k − 2)!

(4π
√
nm1m2)k−1

∑

h∈F

an(h)am1(h)am2(h)

‖h‖2

= T (m1,m2, n)ω
′(
√
m1n/m2)

−1

+
2π

ik

∑

c>0,
N |c

1

c
Sω′(m2,m1; n; c)Jk−1(

4π
√
nm1m2

c
).

Proof. When a1(h) = 1 and h is an eigenfunction of Tn, then λn(h) = an(h). �

If we take n = 1 in the main theorem, then Tn is the identity map, so any
orthogonal basis F will do, and λ1(h) = 1 for all h ∈ F . In this way we recover
the classical Petersson trace formula (cf. [IK], Prop. 14.5):

Corollary 3.12 For any orthogonal basis F for Sk(N,ω
′),

ψ(N)−1(k− 2)!

(4π
√
mn)k−1

∑

h∈F

am(h)an(h)

‖h‖2
= δ(m,n)
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+
2π

ik

∑

c>0,
N |c

1

c
Sω′(n,m; c)Jk−1(

4π
√
mn

c
).

Remark: Although our main result involves both Hecke eigenvalues and Fourier
coefficients, Corollary 3.11 shows that the formula can be rewritten in terms
of three Fourier coefficients. As a result, the generalized formula holds nothing
more than the Petersson trace formula. This is due to the fact that by the
multiplicative relations among the Hecke operators ([Sh] Thm 3.24), for any
eigenform h with a1(h) = 1, we can express an(h)am1(h) as a linear combination
of other Fourier coefficients, with coefficients independent of h.
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